
Bayesian Analysis (2021) 16, Number 3, pp. 961–989

Optional Stopping with Bayes Factors:
A Categorization and Extension of Folklore
Results, with an Application to Invariant

Situations

Allard Hendriksen∗, Rianne de Heide†, and Peter Grünwald†

Abstract. It is often claimed that Bayesian methods, in particular Bayes factor
methods for hypothesis testing, can deal with optional stopping. We first give
an overview, using elementary probability theory, of three different mathematical
meanings that various authors give to this claim: (1) stopping rule independence,
(2) posterior calibration and (3) (semi-) frequentist robustness to optional stop-
ping. We then prove theorems to the effect that these claims do indeed hold in
a general measure-theoretic setting. For claims of type (2) and (3), such results
are new. By allowing for non-integrable measures based on improper priors, we
obtain particularly strong results for the practically important case of models with
nuisance parameters satisfying a group invariance (such as location or scale). We
also discuss the practical relevance of (1)–(3), and conclude that whether Bayes
factor methods actually perform well under optional stopping crucially depends
on details of models, priors and the goal of the analysis.

Keywords: Bayesian testing, optional stopping, Bayes factors, group invariance,
right Haar prior.

1 Introduction

In recent years, a surprising number of scientific results have failed to hold up to contin-
ued scrutiny. Part of this ‘replicability crisis’ may be caused by practices that ignore the
assumptions of traditional (frequentist) statistical methods (John et al., 2012). One of
these assumptions is that the experimental protocol should be completely determined
upfront. In practice, researchers often adjust the protocol due to unforeseen circum-
stances or collect data until a point has been proven. This practice, which is referred
to as optional stopping, can cause true hypotheses to be wrongly rejected much more
often than these statistical methods promise.

Bayes factor hypothesis testing has long been advocated as an alternative to tra-
ditional testing that can resolve several of its problems; in particular, it was claimed
early on that Bayesian methods continue to be valid under optional stopping (Lind-
ley, 1957; Raiffa and Schlaifer, 1961; Edwards et al., 1963). In particular, the latter
paper claims that (with Bayesian methods) “it is entirely appropriate to collect data
until a point has been proven or disproven, or until the data collector runs out of time,
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money, or patience.” In light of the replicability crisis, such claims have received much
renewed interest (Wagenmakers, 2007; Rouder, 2014; Schönbrodt et al., 2017; Yu et al.,
2014; Sanborn and Hills, 2014). But what do they mean mathematically? It turns out
that different authors mean quite different things by ‘Bayesian methods handle optional
stopping’; moreover, such claims are often shown to hold only in an informal sense, or
in restricted contexts. Thus, the first goal of the present paper is to give a systematic
overview and formalization of such claims in a simple, expository setting and, still in
this simple setting, explain their relevance for practice: can we effectively rely on Bayes
factor testing to do a good job under optional stopping or not? As we shall see, the
answer is subtle. The second goal is to extend the reach of such claims to more general
settings, for which they have never been formally verified and for which verification is
not always trivial.

Overview In Section 2, we give a systematic overview of what we identified to be the
three main mathematical senses in which Bayes factor methods can handle optional
stopping, which we call τ -independence, calibration, and (semi-)frequentist. We first
do this in a setting chosen to be as simple as possible — finite sample spaces and
strictly positive probabilities — allowing for straightforward statements and proofs of
results. In Section 3, we explain the practical relevance of these three notions. It turns
out that whether or not we can say that ‘the Bayes factor method can handle optional
stopping’ in practice is a subtle matter, depending on the specifics of the given situation:
what models are used, what priors, and what is the goal of the analysis. We can thus
explain the paradox that there have also been claims in the literature that Bayesian
methods cannot handle optional stopping in certain cases; such claims were made, for
example by Yu et al. (2014); Sanborn and Hills (2014), and also by ourselves (de Heide
and Grünwald, 2018). We also briefly discuss safe tests (Grünwald et al., 2019) which
can be interpreted as a novel method for determining priors that behave better under
frequentist optional stopping. The paper has been organized in such a way that these
first two sections can be read with only basic knowledge of probability theory and
Bayesian statistics. For convenience, we illustrate Section 3 with an informally stated
example involving group invariances, so that the reader gets a complete overview of
what the later, more mathematical sections are about.

Section 4 extends the statements and results to a much more general setting allowing
for a wide range of sample spaces and measures, including measures based on improper
priors. These are priors that are not integrable, thus not defining standard probability
distributions over parameters, and as such they cause technical complications. Such pri-
ors are indispensable within the recently popularized default Bayes factors for common
hypothesis tests (Rouder et al., 2009, 2012; Jamil et al., 2016).

In Section 5, we provide stronger results for the case in which both models satisfy the
same group invariance. Several (not all) default Bayes factor settings concern such sit-
uations; prominent examples are Jeffreys’ (1961) Bayesian one- and two-sample t-tests,
in which the models are location and location-scale families, respectively. Many more
examples are given by Berger and various collaborators (Berger et al., 1998a; Dass and
Berger, 2003; Bayarri et al., 2012, 2016). These papers provide compelling arguments
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for using the (typically improper) right Haar prior on the nuisance parameters in such
situations; for example, in Jeffreys’ one-sample t-test, one puts a right Haar prior on the
variance. In particular, in our restricted context of Bayes factor hypothesis testing, the
right Haar prior does not suffer from the marginalization paradox (Dawid et al., 1973)
that often plagues Bayesian inference based on improper priors. Nevertheless, the right
Haar prior is not entirely without problems either (we briefly return to these points in
the conclusion).

Haar priors and group invariant models were studied extensively by Eaton (1989);
Andersson (1982); Wijsman (1990), whose results this paper depends on considerably.
When nuisance parameters (shared by both H0 and H1) are of suitable form and the
right Haar prior is used, we can strengthen the results of Section 4: they now hold
uniformly for all possible values of the nuisance parameters, rather than in the marginal,
‘on average’ sense we consider in Section 4. However — and this is an important insight
— we cannot take arbitrary stopping rules if we want to handle optional stopping in
this strong sense: our theorems only hold if the stopping rules satisfy a certain intuitive
condition, which will hold in many but not all practical cases: the stopping rule must
be “invariant” under some group action. For instance, a rule such as ‘stop as soon as
the Bayes factor is ≥ 20’ is allowed, but a rule (in the Jeffreys’ one-sample t-test) such
as ‘stop as soon as

∑
x2
i ≥ 20’ is not.

Scope and Novelty Our analysis is restricted to Bayesian testing and model selection
using the Bayes factor method; we do not make any claims about other types of Bayesian
inference. Some of the results we present were already known, at least in simple settings;
we refer in each case to the first appearance in the literature that we are aware of.
In particular, our results in Section 4.1 are implied by earlier results in the seminal
work by Berger and Wolpert (1988) on the likelihood principle; we include them any
way since they are a necessary building block for what follows. The real mathematical
novelties in the paper are the results on calibration and (semi-) frequentist optional
stopping with general sample spaces and improper priors and the results on the group
invariance case (Section 4.2–5). These results are truly novel, and — although perhaps
not very surprising — they do require substantial additional work not covered by Berger
and Wolpert (1988), who are only concerned with τ -independence. In particular, the
calibration results require the notion of the ‘posterior odds of some particular posterior
odds’, which need to be defined under arbitrary stopping times. The difficulty here is
that, in contrast to the fixed sample sizes where even with continuous-valued data, the
Bayes factor and the posterior odds usually have a distribution with full support, with
variable stopping times, the support may have ‘gaps’ at which its density is zero or very
near zero. An additional difficulty encountered in the group invariance case is that one
has to define filtrations based on maximal invariants, which requires excluding certain
measure-zero points from the sample space.

2 The Simple Case

Consider a finite set X and a sample space Ω := X T where T is some very large (but
in this section, still finite) integer. One observes a sample xτ ≡ x1, . . . , xτ , which is an
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initial segment of x1, . . . , xT ∈ X T . In the simplest case, τ = n is a sample size that
is fixed in advance; but, more generally τ is a stopping time defined by some stopping
rule (which may or may not be known to the data analyst), defined formally below.

We consider a hypothesis testing scenario where we wish to distinguish between
a null hypothesis H0 and an alternative hypothesis H1. Both H0 and H1 are sets of
distributions on Ω, and they are each represented by unique probability distributions
P̄0 and P̄1 respectively. Usually, these are taken to be Bayesian marginal distributions,
defined as follows. First one writes, for both k ∈ {0, 1}, Hk = {Pθ|k | θ ∈ Θk} with
‘parameter spaces’ Θk; one then defines or assumes some prior probability distributions
π0 and π1 on Θ0 and Θ1, respectively. The Bayesian marginal probability distributions
are then the corresponding marginal distributions, i.e. for any set A ⊂ Ω they satisfy:

P̄0(A) =

∫
Θ0

Pθ|0(A) dπ0(θ) ; P̄1(A) =

∫
Θ1

Pθ|1(A) dπ1(θ). (1)

For now we also further assume that for every n ≤ T , every xn ∈ Xn, P̄0(X
n = xn) > 0

and P̄1(X
n = xn) > 0 (full support), where here, as below, we use random variable

notation, Xn = xn denoting the event {xn} ⊂ Ω. We note that there exist approaches
to testing and model choice such as testing by nonnegative martingales (Shafer et al.,
2011; van der Pas and Grünwald, 2018) and minimum description length (Barron et al.,
1998; Grünwald, 2007) in which the P̄0 and P̄1 may be defined in different (yet related)
ways. Several of the results below extend to general P̄0 and P̄1; we return to this point
at the end of the paper, in Section 6. In all cases, we further assume that we have
determined an additional probability mass function π on {H0, H1}, indicating the prior
probabilities of the hypotheses. The evidence in favor of H1 relative to H0 given data
xτ is now measured either by the Bayes factor or the posterior odds. We now give the
standard definition of these quantities for the case that τ = n, i.e., that the sample
size is fixed in advance. First, noting that all conditioning below is on events of strictly
positive probability, by Bayes’ theorem, we can write for any A ⊂ Ω,

π(H1 | A)
π(H0 | A) =

P (A | H1)

P (A | H0)
· π(H1)

π(H0)
, (2)

where here, as in the remainder of the paper, we use the symbol π to denote not just
prior, but also posterior distributions on {H0, H1}. In the case that we observe xn for
fixed n, the event A is of the form Xn = xn. Plugging this into (2), the left-hand side
becomes the standard definition of posterior odds, and the first factor on the right is
called the Bayes factor.

2.1 First Sense of Handling Optional Stopping: τ -Independence

Now, in reality we do not necessarily observe Xn = xn for fixed n but rather Xτ = xτ

where τ is a stopping time that may itself depend on (past) data (and that in some cases
may in fact be unknown to us). This stopping time may be defined in terms of a stopping

rule f :
⋃T

i≥0 X
i → {stop, continue}. τ ≡ τ(xT ) is then defined as the random variable

which, for any sample x1, . . . , xT , outputs the smallest n such that f(x1, . . . , xn) = stop.
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For any given stopping time τ , any 1 ≤ n ≤ T and sequence of data xn = (x1, . . . , xn),

we say that xn is compatible with τ if it satisfiesXn = xn ⇒ τ = n. We let X τ ⊂
⋃T

i=1 X i

be the set of all sequences compatible with τ .

Observations take the form Xτ = xτ , which is equivalent to the event Xn = xn;
τ = n for some n and some xn ∈ Xn which of necessity must be compatible with τ . We
can thus instantiate (2) to

π(H1 | Xn = xn, τ = n)

π(H0 | Xn = xn, τ = n)
=

P (τ = n | Xn = xn, H1) · π(H1 | Xn = xn)

P (τ = n | Xn = xn, H0) · π(H0 | Xn = xn)
=

=
π(H1 | Xn = xn)

π(H0 | Xn = xn)
, (3)

where in the first equality we used Bayes’ theorem (keeping Xn = xn on the right of the
conditioning bar throughout); the second equality stems from the fact that Xn = xn

logically implies τ = n, since xn is compatible with τ ; the probability P (τ = n | Xn =
xn, Hj) must therefore be 1 for j = 0, 1. Combining (3) with Bayes’ theorem we get:

γ(xn)︷ ︸︸ ︷
π(H1 | Xn = xn, τ = n)

π(H0 | Xn = xn, τ = n)
=

β(xn)︷ ︸︸ ︷
P̄1(X

n = xn)

P̄0(Xn = xn)
· π(H1)

π(H0)
, (4)

where we introduce the notation γ(xn) for the posterior odds and β(xn) for the Bayes
factor based on sample xn, calculated as if n were fixed in advance.1

We see that the stopping rule plays no role in the expression on the right. Thus,
we have shown that, for any two stopping times τ1 and τ2 that are both compatible
with some observed xn, the posterior odds one arrives at will be the same irrespective
of whether xn came to be observed because τ1 was used or if xn came to be observed
because τ2 was used. We say that the posterior odds do not depend on the stopping rule
τ and call this property τ -independence. Incidentally, this also justifies that we write
the posterior odds as γ(xn), a function of xn alone, without referring to the stopping
time τ .

The fact that the posterior odds given xn do not depend on the stopping rule is
the first (and simplest) sense in which Bayesian methods handle optional stopping.
It has its roots in the stopping rule principle, the general idea that the conclusions
obtained from the data by ‘reasonable’ statistical methods should not depend on the
stopping rule used. This principle was probably first formulated by Barnard (1947;
1949); Barnard (1949) very implicitly showed that, under some conditions, Bayesian
methods satisfy the stopping rule principle (and hence satisfy τ -independence). Other
early sources are Lindley (1957) and Edwards et al. (1963). Lindley gave an informal
proof in the context of specific parametric models; in Section 4.1 we show that, under
some regularity conditions, the result indeed remains true for general σ-finite P̄0 and P̄1.

1A slightly different way to get to (4), which some may find even simpler, is to start with P̄0(Xn =
xn, τ = n) = P̄0(Xn = xn) (since Xn = xn implies τ = n), whence π(Hj | Xn = xn, τ = n) ∝
P̄j(X

n = xn, τ = n)π(Hj) = P̄j(X
n = xn)π(Hj).
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A special case of our result (allowing continuous-valued sample spaces but not general
measures) was proven by Raiffa and Schlaifer (1961), and a more general statement
about the connection between the ‘likelihood principle’ and the ‘stopping rule principle’
which implies our result in Section 4.1 can be found in the seminal work (Berger and
Wolpert, 1988), who also provide some historical context. Still, even though not new in
itself, we include our result on τ -independence with general sample spaces and measures
since it is the basic building block of our later results on calibration and semi-frequentist
robustness, which are new.

Finally, we should note that both Raiffa and Schlaifer (1961) and Berger and Wolpert
(1988) consider more general stopping rules, which can map to a probability of stop-
ping instead of just {stop, continue}. Also, they allow the stopping rule itself to be
parameterized: one deals with a collection of stopping rules {fξ : ξ ∈ Ξ} with cor-
responding stopping times {τξ : ξ ∈ Ξ}, where the parameter ξ is equipped with a
prior such that ξ and Hj are required to be a priori independent. Such extensions are
straightforward to incorporate into our development as well (very roughly, the second
equality in (3) now follows because, by conditional independence, we must have that
P (τξ = n | Xn = xn, H1) = P (τξ = n | Xn = xn, H0)); we will not go into such
extensions any further in this paper.

2.2 Second Sense of Handling Optional Stopping: Calibration

An alternative definition of handling optional stopping was introduced by Rouder (2014).
Rouder calls γ(xn) the nominal posterior odds calculated from an obtained sample xn,
and defines the observed posterior odds as

π(H1 | γ(xn) = c)

π(H0 | γ(xn) = c)

as the posterior odds given the nominal odds. Rouder first notes that, at least if the
sample size is fixed in advance to n, one expects these odds to be equal. For instance,
if an obtained sample yields nominal posterior odds of 3-to-1 in favor of the alternative
hypothesis, then it must be 3 times as likely that the sample was generated by the
alternative probability measure. In the terminology of de Heide and Grünwald (2018),
Bayes is calibrated for a fixed sample size n. Rouder then goes on to note that, if n is
determined by an arbitrary stopping time τ (based for example on optional stopping),
then the odds will still be equal — in this sense, Bayesian testing is well-behaved in
the calibration sense irrespective of the stopping rule/time. Formally, the requirement
that the nominal and observed posterior odds be equal leads us to define the calibration

hypothesis, which postulates that c = P (H1|γ=c)
P (H0|γ=c) holds for any c > 0 that has non-zero

probability. For simplicity, for now we only consider the case with equal prior odds
for H0 and H1 so that γ(xn) = β(xn). Then the calibration hypothesis says that, for
arbitrary stopping time τ , for every c such that β(xτ ) = c for some xτ ∈ X τ , one has

c =
P (β(xτ ) = c | H1)

P (β(xτ ) = c | H0)
. (5)
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In the present simple setting, this hypothesis is easily shown to hold, because we can
write:

P (β(Xτ ) = c | H1)

P (β(Xτ ) = c | H0)
=

∑
y∈X τ :β(y)=c P ({y} | H1)∑
y∈X τ ;β(y)=c P ({y} | H0)

=

∑
y∈X τ :β(y)=c cP ({y} | H0)∑
y∈X τ :β(y)=c P ({y} | H0)

= c.

Rouder noticed that the calibration hypothesis should hold as a mathematical theorem,
without giving an explicit proof; he demonstrated it by computer simulation in a simple
parametric setting. Deng et al. (2016) gave a proof for a somewhat more extended setting
yet still with proper priors. In Section 4.2 we show that a version of the calibration
hypothesis continues to hold for general measures based on improper priors, and in
Section 5.4 we extend this further to strong calibration for group invariance settings as
discussed below.

We note that this result, too, relies on the priors themselves not depending on the
stopping time, an assumption which is violated in several standard default Bayes factor
settings. We also note that, if one thinks of one’s priors in a default sense — they
are practical but not necessarily fully believed — then the practical implications of
calibration are limited, as shown experimentally by de Heide and Grünwald (2018).
One would really like a stronger form of calibration in which (5) holds under a whole
range of distributions in H0 and H1, rather than in terms of P̄0 and P̄1 which average
over a prior that perhaps does not reflect one’s beliefs fully. For the case that H0 and
H1 share a nuisance parameter g taking values in some set G, one can define this strong
calibration hypothesis as stating that, for all c with β(xτ ) = c for some xτ ∈ X τ , all
g ∈ G,

c =
P (β(xτ ) = c | H1, g)

P (β(xτ ) = c | H0, g)
, (6)

where β is still defined as above; in particular, when calculating β one does not condition
on the parameter having the value g, but when assessing its likelihood as in (6) one does.
de Heide and Grünwald (2018) show that the strong calibration hypothesis certainly
does not hold for general parameters, but they also show by simulations that it does
hold in the practically important case with group invariance and right Haar priors
(Example 1 provides an illustration). In Section 5.4 we show that in such cases, one can
indeed prove that a version of (6) holds.

2.3 Third Sense of Handling Optional Stopping: (Semi-)Frequentist

In classical, Neyman-Pearson style null hypothesis testing, a main concern is to limit
the false positive rate of a hypothesis test. If this false positive rate is bounded above by
some α > 0, then a null hypothesis significance test (NHST) is said to have significance
level α, and if the significance level is independent of the stopping rule used, we say
that the test is robust under frequentist optional stopping.

Definition 1. A function S :
⋃T

i=m X i → {0, 1} is said to be a frequentist sequential
test with significance level α and minimal sample size m that is robust under optional
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stopping relative to H0 if for all P ∈ H0

P (∃n,m < n ≤ T : S(Xn) = 1) ≤ α,

i.e. the probability that there is an n at which S(Xn) = 1 (‘the test rejects H0 when
given sample Xn’) is bounded by α.

In our present setting, we can takem = 0 (largerm become important in Section 4.3),
so n runs from 1 to T and it is easy to show that, for any 0 ≤ α ≤ 1, we have

P̄0

(
∃n, 0 < n ≤ T :

1

β(xn)
≤ α

)
≤ α. (7)

Proof. For any fixed α and any sequence xT = x1, . . . , xT , let τ(xT ) be the smallest
n such that, for the initial segment xn of xT , β(xn) ≥ 1/α (if no such n exists we set
τ(xT ) = T ). Then τ is a stopping time, Xτ is a random variable, and the probability
in (7) is equal to the P̄0-probability that β(Xτ ) ≥ 1/α, which by Markov’s inequality
is bounded by α.

It follows that, ifH0 is a singleton, then the sequential test S that rejectsH0 (outputs
S(Xn) = 1) whenever β(xn) ≥ 1/α is a frequentist sequential test with significance level
α that is robust under optional stopping.

The fact that Bayes factor testing with singleton H0 handles optional stopping in
this frequentist way was noted by Edwards et al. (1963) and also emphasized by Good
(1991), among many others. If H0 is not a singleton, then (7) still holds, so the Bayes
factor still handles optional stopping in a mixed frequentist (Type I-error) and Bayesian
(marginalizing over prior within H0) sense. From a frequentist perspective, one may not
consider this to be fully satisfactory, and hence we call it ‘semi-frequentist’. In some
quite special situations though, it turns out that the Bayes factor satisfies the stronger
property of being truly robust to optional stopping in the above frequentist sense, i.e. (7)
will hold for all P ∈ H0 and not just ‘on average’. This is illustrated in Example 1 below
and formalized in Section 5.5.

3 Discussion: Why Should One Care?

Nowadays, even more so than in the past, statistical tests are often performed in an on-
line setting, in which data keeps coming in sequentially and one cannot tell in advance at
what point the analysis will be stopped and a decision will be made — there may indeed
be many such points. Prime examples include group sequential trials (Proschan et al.,
2006) and A/B-testing, to which all internet users who visit the sites of the tech giants
are subjected. In such on-line settings, it may or may not be a good idea to use Bayesian
tests. But can and should they be used? Together with the companion paper (de Heide
and Grünwald, 2018) (DHG from now on), the present paper sheds some light on this
issue. Let us first highlight a central insight from DHG, which is about the case in which
none of the results discussed in the present paper apply: in many practical situations,
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many Bayesian statisticians use priors that are themselves dependent on parts of the
data and/or the sampling plan and stopping time. Examples are Jeffreys prior with
the multinomial model and the Gunel-Dickey default priors for 2x2 contingency tables
advocated by Jamil et al. (2016). With such priors, final results evidently depend on the
stopping rule employed, and even though such methods typically count as ‘Bayesian’,
they do not satisfy τ -independence. The results then become noninterpretable under
optional stopping (i.e. stopping using a rule that is not known at the time the prior
is decided upon), and as argued by de Heide and Grünwald (2018), the notions of
calibration and frequentist optional stopping even become undefined in such a case.

In such situations, one cannot rely on Bayesian methods to be valid under optional
stopping in any sense at all; in the present paper we thus focus on the case with priors
that are fixed in advance, and that themselves do not depend on the stopping rule or
any other aspects of the design. For expository simplicity, we consider the question of
whether Bayes factors with such priors are valid under optional stopping in two extreme
settings: in the first setting, the goal of the analysis is purely exploratory — it should
give us some insight in the data and/or suggest novel experiments to gather or novel
models to analyze data with. In the second setting we consider the analysis as ‘final’
and the stakes are much higher — real decisions involving money, health and the like
are involved — a typical example would be a Stage 2 clinical trial, which will decide
whether a new medication will be put to market or not.

For the first, exploratory setting, exact error guarantees might neither be needed
at all nor obtainable anyway, so the frequentist sense of handling optional stopping
may not be that important. Yet, one would still like to use methods that satisfy some
basic sanity checks for use under optional stopping. τ -independence is such a check: any
method for which it does not hold is simply not suitable for use in a situation in which
details of the stopping rule may be unknown. Also calibration can be viewed as such a
sanity check: Rouder (2014) introduced it mainly to show that Bayesian posterior odds
remain meaningful under optional stopping: they still satisfy some key property that
they satisfy for fixed sample sizes.

For the second high stakes setting, mere sanity and interpretability checks are not
enough: most researchers would want more stringent guarantees, for example on Type-I
and/or Type-II error control. At the same time, most researchers would acknowledge
that their priors are far from perfect, chosen to some extent for purposes of convenience
rather than true belief.2 Such researchers may thus want the desired Type-I error guar-
antees to hold for all P ∈ H0, and not just in average over the prior as in (7). Similarly,
in the high stakes setting the form of calibration (5) that can be guaranteed for the
Bayes factor would be considered too weak, and one would hope for a stronger form of
calibration as explained at the end of Section 2.2.

DHG show empirically that for some often-used models and priors, strong calibration
can be severely violated under optional stopping. Similarly, it is possible to show that
in general, Type-I error guarantees based on Bayes factors simply do not hold simulta-
neously for all P ∈ H0 for such models and priors. Thus, one should be cautious using

2Even De Finetti and Savage, fathers of subjective Bayesianism, acknowledged this: see Section 5
of DHG.
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Bayesian methods in the high stakes setting, despite adhortations such as the quote
by Edwards et al. (1963) in the introduction (or similar quotes by e.g. Rouder et al.,
2009): these existing papers invariably use τ -independence, calibration or Type-I error
control with simple null hypotheses as a motivation to — essentially — use Bayes factor
methods in any situation, including presumably high-stakes situations and situations
with composite null hypotheses.3

Still, and this is equally important for practitioners, while frequentist error control
and strong calibration are violated in general, in some important special cases they do
hold, namely if the models H0 and H1 satisfy a group invariance. We proceed to give
an informal illustration of this fact, deferring the mathematical details to Section 5.5.

Example 1. Consider the one-sample t-test as described by Rouder et al. (2009), going
back to Jeffreys (1961). The test considers normally distributed data with unknown
standard deviation. The test is meant to answer the question whether the data has
mean μ = 0 (the null hypothesis) or some other mean (the alternative hypothesis).
Following (Rouder et al., 2009), a Cauchy prior density, denoted by πδ(δ), is placed on
the effect size δ = μ/σ. The unknown standard deviation is a nuisance parameter and is
equipped with the improper prior with density πσ(σ) =

1
σ under both hypotheses. This

is the so-called right Haar prior for the variance. This gives the following densities on
n outcomes:

p0,σ(x
n) =

1

(2πσ2)n/2
· exp

(
1

2σ2

n∑
i=1

x2
i

)
[ = p1,σ,0(x

n) ], (8)

p1,σ,δ(x
n) =

1

(2πσ2)n/2
· exp

(
−n

2

[(
x

σ
− δ

)2

+

( 1
n

∑n
i=1(xi − x)2

σ2

)])
,

where x = 1
n

∑n
i=1 xi, so that the corresponding Bayesian marginal densities are given

by

p̄0(x
n) =

∫ ∞

0

p0,σ(x
n)πσ(σ) dσ,

p̄1(x
n) =

∫ ∞

0

∫ ∞

−∞
p1,σ,δ(x

n)πδ(δ)πσ(σ) dδ dσ =

∫ ∞

0

p1,σ(x
n)πσ(σ) dσ.

Our results in Section 5 imply that — under a slight, natural restriction on the stopping
rules allowed — the Bayes factor p̄1(x

n)/p̄0(x
n) is truly robust to optional stopping in

the above frequentist sense. That is, (7) will hold for all P ∈ H0, i.e. all σ > 0, and
not just ‘on average’. Thus, we can give Type I error guarantees irrespective of the true
value of σ. Similarly, strong calibration in the sense of Section 2.2 holds for all P ∈ H0.
The use of a Cauchy prior is not essential in this construction; the result will continue

3Since the authors of the present papers are inclined to think frequentist error guarantees are
important, we disagree with such claims, as in fact a subset of researchers calling themselves Bayesians
would as well. To witness, a large fraction of recent ISBA (Bayesian) meetings is about frequentist
properties of Bayesian methods; also the well-known Bayesian authors (Good, 1991 and Edwards et al.,
1963) focus on showing that Bayes factor methods achieve a frequentist Type-I error guarantee, albeit
only for the simple H0 case.
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to hold for any proper prior on δ, including point priors that put all mass on a single
value of δ.

As we show in Section 5, these results extend to a variety of settings, namely when-
ever H0 and H1 share a common so-called group invariance. In the t-test example, it is
a scale invariance — effectively this means that for all δ, all σ, the distributions of

X1, . . . , Xn under p1,σ,δ, and σX1, . . . , σXn under p1,1,δ, coincide. (9)

For other models, one could have a translation invariance; for the full normal family,
one has both translation and scale invariance; for yet other models, one might have
a rotation invariance, and so on. Each such invariance is expressed as a group — a
set equipped with an operation (the group action) that satisfies certain axioms. The
group corresponding to scale invariance is the set of positive reals, and the group action
is scalar multiplication or equivalently division; similarly, the group corresponding to
translation invariance is the set of all reals, and the action is addition.

In the general case, one starts with a group G that satisfies certain further restric-
tions (detailed in Section 5), a model {p1,g,θ : g ∈ G, θ ∈ Θ} where g represents the
invariant parameter (vector) and the parameterization must be such that the analogue
of (9) holds. In the example above g = σ is the variance and θ is set to δ := μ/σ. One
then singles out a special value of θ, say θ0, one sets H0 := {p1,g,θ0 : g ∈ G}; within H1

one puts an arbitrary prior on θ. For every group invariance, there exists a correspond-
ing right Haar prior on G; one equips both models with this prior on G. Theorem 8
and 9 imply that in all models constructed this way, we have strong calibration and
Type-I error control uniformly for all g ∈ G. While this is hinted at in several papers
(e.g. Bayarri et al., 2016; Dass and Berger, 2003) and the special case for the Bayesian
t-test was implicitly proven in earlier work by Lai (1976), it seems to never have been
proven formally in general before.

Our results thus imply that in some situations (group invariance) with composite null
hypotheses, Type-I error control for all P ∈ H0 under optional stopping is possible with
Bayes factors. What about Type-II error control and composite null hypotheses that do
not satisfy a group structure? This is partially addressed by the safe testing approach
of Grünwald et al. (2019) (see also Howard et al., 2018 for a related approach). They
show that for completely arbitrary H0 and H1, for any given prior π1 on H1, there exists
a corresponding prior π0 on H0, the reverse information projection prior, so that, for
all P ∈ H0, one has Type-I error guarantees under frequentist optional continuation, a
weakening of the idea of optional stopping. Further, if one wants to get control of Type-II
error guarantees under optional stopping/continuation, one can do so by first choosing
another special prior π∗

1 on H1 and picking the corresponding π∗
0 on H0. Essentially,

like in ‘default’ or ‘objective’ Bayes approaches, one chooses special priors in lieu of a
subjective choice; but the priors one ends up with are sometimes quite different from
the standard default priors, and, unlike these, allow for frequentist error control under
optional stopping.
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4 The General Case

Let (Ω,F) be a measurable space. Fix some m ≥ 0 and consider a sequence of functions
Xm+1, Xm+2, . . . on Ω so that each Xn, n > m takes values in some fixed set (‘outcome
space’) X with associated σ-algebra Σ. When working with proper priors we invariably
take m = 0 and then we define Xn := (X1, X2, . . . , Xn) and we let Σ(n) be the n-fold
product algebra of Σ. When working with improper priors it turns out to be useful
(more explanation further below) to take m > 0 and define an initial sample random
variable 〈X(m)〉 on Ω, taking values in some set 〈Xm〉 ⊆ Xm with associated σ-algebra
〈Σ(m)〉. In that case we set, for n ≥ m, 〈Xn〉 = {xn = (x1, . . . , xn) ∈ Xn : xm =
(x1, . . . , xm) ∈ 〈Xm〉}, and Xn := (〈X(m)〉, Xm+1, Xm+2, . . . , Xn) and we let Σ(n) be
〈Σ(m)〉×

∏n
j=m+1 Σ. In either case, we let Fn be the σ-algebra (relative to Ω) generated

by (Xn,Σ(n)). Then (Fn)n=m,m+1,... is a filtration relative to F and if we equip (Ω,F)
with a distribution P then 〈X(m)〉, Xm+1, Xm+2, . . . becomes a random process adapted
to F . A stopping time is now generalized to be a function τ : Ω → {m+1,m+2, . . .} ∪
{∞} such that for each n > m, the event {τ = n} is Fn-measurable; note that we
only consider stopping after m initial outcomes. Again, for a given stopping time τ and
sequence of data xn = (x1, . . . , xn), we say that xn is compatible with τ if it satisfies
Xn = xn ⇒ τ = n, i.e. {ω ∈ Ω | Xn(ω) = xn} ⊂ {ω ∈ Ω | τ(ω) = n}.

H0 and H1 are now sets of probability distributions on (Ω,F). Again one writes
Hj = {Pθ|j | θ ∈ Θj} where now the parameter sets Θj (which, however, could itself be
infinite-dimensional) are themselves equipped with suitable σ-algebras.

We will still represent both H0 and H1 by unique measures P̄0 and P̄1 respectively,
which we now allow to be based on (1) with improper priors π0 and π1 that may be
infinite measures. As a result P̄0 and P̄1 are positive real measures that may themselves
be infinite. We also allow X to be a general (in particular uncountable) set. Both
non-integrability and uncountability cause complications, but these can be overcome if
suitable Radon-Nikodym derivatives exist. To ensure this, we will assume that for all

n ≥ max{m, 1}, for all k ∈ {0, 1} and θ ∈ Θk, P
(n)
θ|k , P̄

(n)
0 and P̄

(n)
1 are all mutually

absolutely continuous and that the measures P̄
(n)
1 and P̄

(n)
0 are σ-finite. Then there

also exists a measure ρ on (Ω,F) such that, for all such n, P̄
(n)
1 , P̄

(n)
0 and ρ(n) are all

mutually absolutely continuous: we can simply take ρ(n) = P̄
(n)
0 , but in practice, it is

often possible and convenient to take ρ such that ρ(n) is the Lebesgue measure on R
n,

which is why we explicitly introduce ρ here.

The absolute continuity conditions guarantee that all required Radon-Nikodym
derivatives exist. Finally, we assume that the posteriors πk(Θk | xm) (as defined in
the standard manner in (12) below; when m = 0 these are just the priors) are proper
probability measures (i.e. they integrate to 1) for all xm ∈ 〈Xm〉. This final requirement
is the reason why we sometimes need to consider m > 0 and nonstandard sample spaces
〈Xn〉 in the first place: in practice, one usually starts with the standard setting of a
(Ω,F) where m = 0 and all Xi have the same status. In all practical situations with
improper priors π0 and/or π1 that we know of, there is a smallest finite j and a set
X ◦ ⊂ X j that has measure 0 under all probability distributions in H0 ∪H1, such that,

restricted to the sample space X j \ X ◦, the measures P̄
(j)
1 and P̄

(j)
0 are σ-finite and
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mutually absolutely continuous, and the posteriors πk(Θk | xj) are proper probability
measures. One then sets m to equal this j, and sets 〈Xm〉 := Xm \X ◦, and the required
properness will be guaranteed. Our initial sample 〈X(m)〉 is a variation of what is called
(for example, by Bayarri et al. (2012)) a minimal sample. Yet, the sample size of a stan-
dard minimal sample is itself a random quantity; by restricting Xm to 〈Xm〉, we can
take its sample size m to be constant rather than random, which will greatly simplify
the treatment of optional stopping with group invariance; see Example 1 and 2 below.

We henceforth refer to the setting now defined (with m and initial space 〈Xm〉
satisfying the requirements above) as the general case.

We need an analogue of (4) for this general case. If P̄0 and P̄1 are probability
measures, then there is still a standard definition of conditional probability distributions
P (H | A) in terms of conditional expectation for any given σ-algebra A; based on this,
we can derive the required analogue in two steps. First, we consider the case that τ ≡ n
for some n > m. We know in advance that we observe Xn for a fixed n: the appropriate
A is then Fn, π(H | A)(ω) is determined by Xn(ω) hence can be written as π(H | Xn),
and a straightforward calculation gives that

π(H1 | Xn = xn)

π(H0 | Xn = xn)
=

((
dP̄

(n)
1 /dρ(n)

dP̄
(n)
0 /dρ(n)

)
(xn)

)
· π(H1)

π(H0)
, (10)

where (dP̄
(n)
1 /dρ(n)) and (dP̄

(n)
0 /dρ(n)) are versions of the Radon-Nikodym derivatives

defined relative to ρ(n). The second step is now to follow exactly the same steps as
in the derivation of (4), replacing β(Xn) by (10) wherever appropriate (we omit the
details). This yields, for any n such that ρ(τ = n) > 0, and for ρ(n)-almost every xn

that is compatible with τ ,

γn︷ ︸︸ ︷
π(H1 | xn)

π(H0 | xn)
=

π(H1 | Xn = xn, τ = n)

π(H0 | Xn = xn, τ = n)
=

βn︷ ︸︸ ︷((
dP̄

(n)
1 /dρ(n)

dP̄
(n)
0 /dρ(n)

)
(xn)

)
· π(H1)

π(H0)
, (11)

where here, as below, for n ≥ m, we abbreviate π(Hk | Xn = xn) to π(Hk | xn).

The above expression for the posterior is valid if P̄0 and P̄1 are probability measures;
we will simply take it as the definition of the Bayes factor for the general case. Again
this coincides with standard usage for the improper prior case. In particular, let us
define the conditional posteriors and Bayes factors given 〈X(m)〉 = xm in the standard
manner, by the formal application of Bayes’ rule, for k = 0, 1 and measurable Θ′

k ⊂ Θk

and F-measurable A,

πk(Θ
′
k | xm) :=

∫
Θ′

k

dP
(m)

θ|k
dρ(m) (x

m)dπk(θ)∫
Θk

dP
(m)

θ|k
dρ(m) (xm)dπk(θ)

, (12)

P̄k(A | xm) := P̄k(A | 〈X(m)〉 = xm) :=

∫
Θk

Pθ|k(A | 〈X(m)〉 = xm) dπk(θ | xm), (13)
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where Pθ|k(A | 〈X(m)〉 = xm) is defined as the value that (a version of) the conditional

probability Pθ|k(A | Fm) takes when 〈X(m)〉 = xm, and is thus defined up to a set of

ρ(m)-measure 0.

With these definitions, it is straightforward to derive the following coherence prop-
erty, which automatically holds if the priors are proper, and which in combination
with (11) expresses that first updating on xm and then on xm+1, . . . , xn (multiplying
posterior odds given xm with the Bayes factor for n outcomes given Xm = xm, which
we denote by βn|m) has the same result as updating based on the full x1, . . . , xn at once
(i.e. multiplying the prior odds with the unconditional Bayes factor βn for n outcomes):

π(H1 | Xn = xn, τ = n)

π(H0 | Xn = xn, τ = n)
=

βn|m︷ ︸︸ ︷(
dP̄

(n)
1 (· | xm)

dP̄
(n)
0 (· | xm)

(xn)

)
· π(H1 | xm)

π(H0 | xm)
. (14)

4.1 τ -Independence, General Case

The general version of the claim that the posterior odds do not depend on the specific
stopping rule that was used is now immediate, since the expression (11) for the Bayes
factor does not depend on the stopping time τ .

4.2 Calibration, General Case

We will now show that the calibration hypothesis continues to hold in our general
setting. From here onward, we make the further reasonable assumption that for every
xm ∈ 〈Xm〉, P̄0(τ = ∞ | xm) = P̄1(τ = ∞ | xm) = 0 (the stopping time is almost surely
finite), and we define Tτ := {n ∈ N>m | P̄0(τ = n) > 0}.

To prepare further, let {Bj | j ∈ Tτ} be any collection of positive random variables
such that for each j ∈ Tτ , Bj is F j-measurable. We can define the stopped random
variable Bτ as

Bτ :=

∞∑
j=0

1{τ=j}Bj =

∞∑
j=m+1

1{τ=j}Bj , (15)

where we note that, under this definition, Bτ is well-defined even if EP̄0
[τ ] = ∞.

We can define the induced measures on the positive real line under the null and
alternative hypothesis for any probability measure P on (Ω,F):

P [Bτ ] : B(R>0) → [0, 1] : A �→ P
(
B−1

τ (A)
)
, (16)

where B(R>0) denotes the Borel σ-algebra of R>0. Note that, when we refer to P [Bn],
this is identical to P [Bτ ] for the stopping time τ which on all of Ω stops at n. The
following lemma is crucial for passing from fixed-sample size to stopping-rule based
results.
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Lemma 1. Let Tτ and {Bn | n ∈ Tτ} be as above. Consider two probability measures P0

and P1 on (Ω,F). Suppose that for all n ∈ Tτ , the following fixed-sample size calibration
property holds:

for some fixed c > 0, P0
[Bn]-almost all b :

P1(τ = n)

P0(τ = n)
· dP1

[Bn](· | τ = n)

dP0
[Bn](· | τ = n)

(b) = c · b.

(17)

Then we have

for P0
[Bτ ]-almost all b :

dP1
[Bτ ]

dP0
[Bτ ]

(b) = c · b. (18)

The proof is in Section B in the supplementary material (Hendriksen et al., 2020).

In this subsection we apply this lemma to the measures P̄k(· | xm) for arbitrary

fixed xm ∈ 〈Xm〉, with their induced measures P̄
[γτ ]
0 (· | xm), P̄

[γτ ]
1 (· | xm) for the stopped

posterior odds γτ . Formally, the posterior odds γn as defined in (11) constitute a random
variable for each n, and, under our mutual absolute continuity assumption for P̄0 and

P̄1, γn can be directly written as
dP̄

(n)
1

dP̄
(n)
0

·π(H1)/π(H0). Since, by definition, the measures

P̄k(· | xm) are probability measures, the Radon-Nikodym derivatives in (17) and (18)
are well-defined.

Lemma 2. We have for all xm ∈ 〈Xm〉, all n > m:

for P̄
[γn]
0 (· | xm)-almost all b :

P̄
[γn]
1 (τ = n | xm)

P̄
[γn]
0 (τ = n | xm)

· dP̄
[γn]
1 (· | xm)

dP̄
[γn]
0 (· | xm)

(b) =
π(H0 | xm)

π(H1 | xm)
· b.

(19)

Combining the two lemmas now immediately gives (20) below, and combining further
with (14) and (11) gives (21):

Corollary 3. In the setting considered above, we have for all xm ∈ 〈Xm〉:

for P̄
[γτ ]
0 (· | xm)-almost all b :

π(H1 | xm)

π(H0 | xm)
· dP̄

[γτ ]
1 (· | xm)

dP̄
[γτ ]
0 (· | xm)

(b) = b, (20)

and also

for P̄
[γτ ]
0 (· | xm)-almost all b :

π(H1)

π(H0)
· dP̄

[γτ ]
1

dP̄
[γτ ]
0

(b) = b. (21)

In words, the posterior odds remain calibrated under any stopping rule τ which stops
almost surely at times m < τ < ∞.

For discrete and strictly positive measures with prior odds π(H1)/π(H0) = 1, we

always have m = 0, and (20) is equivalent to (5). Note that P̄
[γτ ]
0 (· | xm)-almost every-

where in (20) is equivalent to P̄
[γτ ]
1 (· | xm)-almost everywhere because the two measures

are assumed to be mutually absolutely continuous.
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4.3 (Semi-)Frequentist Optional Stopping

In this section we consider our general setting as in the beginning of Section 4.2, i.e.
with the added assumption that the stopping time is a.s. finite, and with Tτ := {j ∈
N>m | P̄0(τ = j) > 0}.

Consider any initial sample xm ∈ 〈Xm〉 and let P̄0 | xm and P̄1 | xm be the condi-
tional Bayes marginal distributions as defined in (13). We first note that, by Markov’s
inequality, for any nonnegative random variable Z on Ω with, for all xm ∈ 〈Xm〉,
EP̄0|xm [Z] ≤ 1, we must have, for 0 ≤ α ≤ 1, P̄0(Z

−1 ≤ α | xm) ≤ EP̄0|xm [Z]/α−1 ≤ α.

Proposition 4. Let τ be any stopping rule satisfying our requirements. Let βτ |m be the
stopped Bayes factor given xm, i.e., in accordance with (15), βτ |m =

∑∞
j=m+1 1{τ=j}βj|m

with βj|m as given by (14). Then βτ |m satisfies, for all xm ∈ 〈Xm〉, EP̄0|xm [βτ |m] ≤ 1,

so that, by the reasoning above, P̄0(
1

βτ|m
≤ α | xm) ≤ α.

Proof. We have

EP̄0|xm [γτ ] =

∫
bP̄

[γτ ]
0 ( db | xm) =∫

dP̄
[γτ ]
1 (b | xm)

dP̄
[γτ ]
0 (b | xm)

· π(H1 | xm)

π(H0 | xm)
P̄

[γτ ]
0 ( db | xm) =

π(H1 | xm)

π(H0 | xm)
,

where the first equality follows by definition of expectation, the second follows from
Corollary 3, and the third follows from the fact that the integral equals 1.

But now note that

βτ |m =

∞∑
j=m+1

1{τ=j}βj|m =

∞∑
j=m+1

1{τ=j}γj ·
π(H0 | xm)

π(H1 | xm)
= γτ · π(H0 | xm)

π(H1 | xm)
,

where the second equality follows from (14) together with the first equality in (11).
Combining the two equations we get:

EP̄0|xm

[
βτ |m

]
= EP̄0|xm

[
γτ · π(H0 | xm)

π(H1 | xm)

]
= 1.

The desired result now follows by plugging in a particular stopping rule: let S :⋃∞
i=m+1 X

i → {0, 1} be the frequentist sequential test defined by setting, for all n > m,
xn ∈ 〈Xn〉: S(xn) = 1 if and only if βn|m ≥ 1/α.

Corollary 5. Let t∗ ∈ {m + 1,m + 2, . . .} ∪ {∞} be the smallest t∗ > m for which
β−1
t|m ≤ α. Then for arbitrarily large T , when applied to the stopping rule τ := min{T, t∗},

we find that

P̄0(∃n,m < n ≤ T : S(Xn) = 1 | xm) = P̄0(∃n,m < n ≤ T : β−1
n|m ≤ α | xm) ≤ α.

The corollary implies that the test S is robust under optional stopping in the fre-
quentist sense relative to H0 (Definition 1). Note that, just as in the simple case, the
setting is really just ‘semi-frequentist’ whenever H0 is not a singleton.
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5 Optional Stopping with Group Invariance

Whenever the null hypothesis is composite, the previous results only hold under the
marginal distribution P̄0 or, in the case of improper priors, under P̄0(· | Xm = xm).
When a group structure can be imposed on the outcome space and (a subset of the)
parameters that is joint to H0 and H1, stronger results can be derived for calibration
and frequentist optional stopping. Invariably, such parameters function as nuisance pa-
rameters and our results are obtained if we equip them with the so-called right Haar
prior which is usually improper. Below we show how we then obtain results that si-
multaneously hold for all values of the nuisance parameters. Such cases include many
standard testing scenarios such as the (Bayesian variations of the) t-test, as illustrated
in the examples below. Note though that our results do not apply to settings with im-
proper priors for which no group structure exists. For example, if Pθ|0 expresses that
X1, X2, . . . are i.i.d. Poisson(θ), then from an objective Bayes or MDL point of view it
makes sense to adopt Jeffreys’ prior for the Poisson model; this prior is improper, allows
initial sample size m = 1, but does not allow for a group structure. For such a prior we
can only use the marginal results Corollary 3 and Corollary 5. Group theoretic prelimi-
naries, such as definitions of a (topological) group, the right Haar measure, etcetera can
be found in Section B of the supplementary material (Hendriksen et al., 2020).

5.1 Background for Fixed Sample Sizes

Here we prepare for our results by providing some general background on invariant
priors for Bayes factors with fixed sample size n on models with nuisance parameters
that admit a group structure, introducing the right Haar measure, the corresponding
Bayes marginals, and (maximal) invariants. We use these results in Section 5.2 to derive
Lemma 7, which gives us a strong version of calibration for fixed n. The setting is
extended to variable stopping times in Section 5.3, and then Lemma 7 is used in this
extended setting to obtain our strong optional stopping results in Section 5.4 and 5.5.

For now, we assume a sample space 〈Xn〉 that is locally compact and Hausdorff,
and that is a subset of some product space Xn where X is itself locally compact and
Hausdorff. This requirement is met, for example, when X = R and 〈Xn〉 = Xn. In
practice, the space 〈Xn〉 is invariably a subset of Xn where some null-set is removed for
technical reasons that will become apparent below. We associate 〈Xn〉 with its Borel
σ-algebra which we denote as Fn. Observations are denoted by the random vector
Xn = (X1, . . . , Xn) ∈ 〈Xn〉. We thus consider outcomes of fixed sample size, denoting
these as xn ∈ 〈Xn〉, returning to the case with stopping times in Section 5.4 and 5.5.

From now on we let G be a locally compact group G that acts topologically and
properly4 on the right of 〈Xn〉. As hinted to before, this proper action requirement
sometimes forces the removal from Xn of some trivial set with measure zero under all
hypotheses involved. This is demonstrated at the end of Example 1 below.

4A group acts properly on a set Y if the mapping ψ : Y ×G �→ Y ×Y defined by ψ(y, g) = (y · g, y)
is a proper mapping, i.e. the inverse image of ψ of each compact set in Y ×Y is a compact set in Y ×G.
(Eaton (1989), Definition 5.1).
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Let P0,e and P1,e (notation to become clear below) be two arbitrary probability
distributions on 〈Xn〉 that are mutually absolutely continuous. We will now generate
hypothesis classes H0 and H1, both sets of distributions on 〈Xn〉 with parameter space
G, starting from P0,e and P1,e, where e ∈ G is the group identity element. The group
action of G on 〈Xn〉 induces a group action on these measures defined by

Pk,g(A) := (Pk,e · g)(A) := Pk,e(A · g−1) =

∫
1{A}(x · g)Pk,e( dx) (22)

for any set A ∈ Fn, k = 0, 1. When applied to A = 〈Xn〉, we get Pk,g(A) = 1, for all
g ∈ G, whence we have created two sets of probability measures parameterized by g,
i.e.,

H0 := {P0,g | g ∈ G} ; H1 := {P1,g | g ∈ G}. (23)

In this context, g ∈ G, can typically be viewed as nuisance parameter, i.e. a parameter
that is not directly of interest, but needs to be accounted for in the analysis. This
is illustrated in Example 1 and Example 2 below. The examples also illustrate how
to extend this setting to cases where there are more parameters than just g ∈ G in
either H0 or H1. We extend the whole setup to our general setting with non-fixed n in
Section 5.4.

We use the right Haar measure for G as a prior to define the Bayes marginals:

P̄k(A) =

∫
G

∫
〈Xn〉

1{A} dPk,g ν( dg) (24)

for k = 0, 1 and A ∈ Fn. Typically, the right Haar measure is improper so that the
Bayes marginals P̄k are not integrable. Yet, in all cases of interest, they are (a) still
σ-finite, and, (b), P̄0, P̄1 and all distributions Pk,g with k = 0, 1 and g ∈ G are mutually
absolutely continuous; we will henceforth assume that (a) and (b) are the case.

Example 1 (continued). Consider the t-test of Example 1. For consistency with the
earlier Example 1, we abbreviate for general measures P on 〈Xn〉, ( dP/ dλ) (the density
of distribution P relative to Lebesgue measure on R

n) to p. Normally, the one-sample
t-test is viewed as a test between H0 = {P0,σ | σ ∈ R>0} and H ′

1 = {P1,σ,δ | σ ∈
R>0, δ ∈ R}, but we can obviously also view it as test between H0 and H1 = {P1,σ} by
integrating out the parameter δ to obtain

p1,σ(x
n) =

∫
p1,σ,δ(x

n)πδ(δ) dδ. (25)

The nuisance parameter σ can be identified with the group of scale transformations
G = {c | c ∈ R>0}. We thus let the sample space be 〈Xn〉 = R

n \ {0}n, i.e., we remove
the measure-zero set {0}n, such that the group action is proper on the sample space.
The group action is defined by xn · c = c xn for xn ∈ 〈Xn〉, c ∈ G. Take e = 1 and let,
for k = 0, 1, Pk,e be the distribution with density pk,1 as defined in (8) and (25). The
measures P0,g and P1,g defined by (22) then turn out to have the densities p0,σ and p1,σ
as defined above, with σ replaced by g. Thus, H0 and H1 as defined by (8) and (25) are
indeed in the form (23) needed to state our results.
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In most standard invariant settings, H0 and H1 share the same vector of nuisance
parameters, and one can reduce H0 and H1 to (23) in the same way as above, by inte-
grating out all other parameters; in the example above, the only non-nuisance parameter
was δ. The scenario of Example 1 can be generalized to a surprisingly wide variety of
statistical models. In practice we often start with a model H1 = {P1,γ,δ : γ ∈ Γ, θ ∈ Θ}
that implicitly already contains a group structure, and we single out a special subset
{P1, γ, θ0 : γ ∈ Γ}; this is what we informally described in Example 1. More generally,
we can start with potentially large (or even nonparametric) hypotheses

H ′
k = {Pθ′|k : θ′ ∈ Θ′

k} (26)

which at first are not related to any group invariance, but which we want to equip with
an additional nuisance parameter determined by a group G acting on the data. We can
turn this into an instance of the present setting by first choosing, for k = 0, 1, a proper
prior density πk on Θ′

k, and defining Pk,e to equal the corresponding Bayes marginal,
i.e.

Pk,e(A) :=

∫
Pθ′|k(A) dπk(θ

′). (27)

We can then generate Hk = {Pk,g | g ∈ G} as in (22) and (23). In the example above,
H ′

1 would be the set of all Gaussians with a single fixed variance σ2
0 and Θ′

1 = R

would be the set of all effect sizes δ, and the group G would be scale transformation;
but there are many other possibilities. To give but a few examples, Dass and Berger
(2003) consider testing the Weibull vs. the log-normal model, the exponential vs. the
log-normal, correlations in multivariate Gaussians, and Berger et al. (1998b) consider
location-scale families and linear models where H0 and H1 differ in their error distri-
bution; another example is when the nuisance parameters comprise an l-dimensional
sphere; the right Haar prior is then a uniform probability distribution on this sphere.
Importantly, the group G acting on the data induces groups Gk, k = 0, 1, acting on the
parameter spaces, which depend on the parameterization. In our example, the Gk were
equal to G, but, for example, if H0 is Weibull and H1 is log-normal, both given in their
standard parameterizations, we get G0 = {g0,b,c | g0,b,c(β, γ) = (bβc, γ/c), b > 0, c > 0}
and G1 = {g1,b,c | g1,b,c(μ, σ) = (cμ + log(b), cσ), b > 0, c > 0}. Several more examples
are given by Dass (1998).

On the other hand, clearly not all hypothesis sets can be generated using the above
approach. For instance, the hypothesis H ′

1 = {Pμ,σ | μ = 1, σ > 0} with Pμ,σ a Gaussian
measure with mean μ and standard deviation σ cannot be represented as in (23). This
is due to the fact that for σ, σ′ > 0, σ �= σ′, no element g ∈ R>0 exists such that for any
measurable set A ⊆ 〈Xn〉 the equality P1,σ(A) = P1,σ′(A · g−1) holds. This prevents an
equivalent construction of H ′

1 in the form of (23).

We now turn to the main ingredient that will be needed to obtain results on optional
stopping: the quotient σ-algebra.

Definition 2 (Eaton, 1989, Chapter 2). A groupG acting on the right of a set Y induces
an equivalence relation: y1 ∼ y2 if and only if there exists g ∈ G such that y1 = y2·g. This
equivalence relation partitions the space in orbits: Oy = {y · g | g ∈ G}, the collection
of which is called the quotient space Y/G. There exists a map, the natural projection,
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from Y to the quotient space which is defined by ϕY : Y → Y/G : y �→ {y · g | g ∈ G},
and which we use to define the quotient σ-algebra

Gn = {ϕ−1
〈Xn〉(ϕ〈Xn〉(A)) | A ∈ Fn}. (28)

Definition 3 (Eaton, 1989, Chapter 2). A random element Un on 〈Xn〉 is invariant
if for all g ∈ G, xn ∈ 〈Xn〉, Un(x

n) = Un(x
n · g). The random element Un is maximal

invariant if Un is invariant and for all yn ∈ 〈Xn〉, Un(x
n) = Un(y

n) implies xn = yn · g
for some g ∈ G.

Thus, Un is maximal invariant if and only if Un is constant on each orbit, and takes
different values on different orbits; ϕ〈Xn〉 is thus an example of a maximal invariant.
Note that any maximal invariant is Gn-measurable. The importance of this quotient
σ-algebra Gn is the following evident fact:

Proposition 6. For fixed k ∈ {0, 1}, every invariant Un has the same distribution
under all Pk,g, g ∈ G.

Chapter 2 of Eaton (1989) provides several methods and examples how to construct
a concrete maximal invariant, including the first two given below. Since βn is invariant
under the group action of G (see below), βn is an example of an invariant, although not
necessarily of a maximal invariant.

Example 1 (continued). Consider the setting of the one-sample t-test as described
above in Example 1. A maximal invariant for xn ∈ 〈Xn〉 is Un(x

n) = (x1/|x1|, x2/|x1|,
. . . , xn/|x1|).

Example 2. A second example, with a group invariance structure on two parameters,
is the setting of the two-sample t-test with the right Haar prior (which coincides here
with Jeffreys’ prior) π(μ, σ) = 1/σ (see Rouder et al., 2009 for details): the group is
G = {(a, b) | a > 0, b ∈ R}. Let the sample space be 〈Xn〉 = R

n \ span(en), where en
denotes a vector of ones of length n (this is to exclude the measure-zero line for which
the s(xn) is zero), and define the group action by xn · (a, b) = axn + ben for xn ∈ 〈Xn〉.
Then (Eaton, 1989, Example 2.15) a maximal invariant for xn ∈ 〈Xn〉 is Un(x

n) =

(xn − xen)/s(x
n), where x is the sample mean and s(xn) =

(∑n
i=1(xi − x)2

)1/2
.

However, we can also construct a maximal invariant similar to the one in Example 1,
which gives a special status to an initial sample:

Un (X
n) =

(
X2 −X1

|X2 −X1|
,
X3 −X1

|X2 −X1|
, . . . ,

Xn −X1

|X2 −X1|

)
, n ≥ 2.

5.2 Relatively Invariant Measures and Calibration for Fixed n

Let Un be a maximal invariant, taking values in the measurable space (Un,Gn). Although
we have given more concrete examples above, it follows from the results of Andersson
(1982) that, in case we do not know how to construct a Un, we can always take Un =
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ϕ〈Xn〉, the natural projection. Since we assume mutual absolute continuity, the Radon-

Nikodym derivative
dP

[Un]
1,g

dP
[Un]
0,g

must exist and we can apply the following theorem (note it

is here that the use of right Haar measure is crucial; a different result holds for the left
Haar measure):5

Theorem (Berger et al., 1998a, Theorem 2.1). Under our previous definitions of and
assumptions on G, Pk,g, P̄k let β(xn) := P̄1(x

n)/P̄0(x
n) be the Bayes factor based on xn.

Let Un be a maximal invariant as above, with (adopting the notation of (16)) marginal

measures P
[Un]
k,g , for k = 0, 1 and g ∈ G. There exists a version of the Radon-Nikodym

derivative such that we have for all g ∈ G, all xn ∈ 〈Xn〉,

dP
[Un]
1,g

dP
[Un]
0,g

(Un(x
n)) = β(xn). (29)

As a first consequence of the theorem above, we note (as did Berger et al., 1998a)
that the Bayes factor βn := β(XN ) is Gn-measurable (it is constant on orbits), and thus
it has the same distribution under P0,g and P1,g for all g ∈ G. The theorem also implies
the following crucial lemma:

Lemma 7 (Strong Calibration for Fixed n). Under the assumptions of the theorem
above, let Un be a maximal invariant and let Vn be a Gn-measurable binary random
variable with P0,g(Vn = 1) > 0, P1,g(Vn = 1) > 0. Adopting the notation of (16), we

can choose the Radon-Nikodym derivative dP
[βn]
1,g (· | Vn = 1)/ dP

[βn]
0,g (· | Vn = 1) so that

we have, for all xn ∈ 〈Xn〉:

P1,g(Vn = 1)

P0,g(Vn = 1)
·
dP

[βn]
1,g (· | Vn = 1)

dP
[βn]
0,g (· | Vn = 1)

(βn(x
n)) = βn(x

n), (30)

where for the special case with Pk,g(Vn = 1) = 1, we get
dP

[βn]
1,g

dP
[βn]
0,g

(βn(x
n)) = βn(x

n).

5.3 Extending to Our General Setting with Non-Fixed Sample Sizes

We start with the same setting as above: a group G on sample space 〈Xn〉 ⊂ Xn that
acts topologically and properly on the right of 〈Xn〉; two distributions P0,e and P1,e

on (〈Xn〉,Fn) that are used to generate H0 and H1, and Bayes marginal measures
based on the right Haar measure P̄0 and P̄1, which are both σ-finite. We now denote

Hk as H
(n)
k , Pk,e as P

(n)
k,e and P̄k as P̄

(n)
k , all P ∈ H

(n)
0 ∪H

(n)
1 are mutually absolutely

continuous.

We now extend this setting to our general random process setting as specified in
the beginning of Section 4.2 by further assuming that, for the same group G, for some

5This theorem requires that there exists some relatively invariant measure μ on 〈Xn〉 such that for
k = 0, 1, g ∈ G, the Pk,g all have a density relative to μ. Since the Bayes marginal P̄0 based on the
right Haar prior is easily seen to be such a relatively invariant measure, the conditions for the theorem
apply.
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m > 0, the above setting is defined for each n ≥ m. To connect the H
(n)
k for all these

n, we further assume that there exists a subset 〈Xm〉 ⊂ Xm that has measure 1 under

P
(n)
k,e (and hence under all P

(n)
g,e ) such that for all n ≥ m:

1. We can write 〈Xn〉 = {xn ∈ Xn : (x1, . . . , xm) ∈ 〈Xm〉}.
2. For all xn ∈ 〈Xn〉, the posterior ν | xn based on the right Haar measure ν is

proper.

3. The probability measures P
(n)
k,e and P

(n+1)
k,e satisfy Kolmogorov’s compatibility

condition for a random process.

4. The group action · on the measures P
(n)
k,e and P

(n+1)
k,e is compatible, i.e. for every

n > 0, for every A ∈ Fn, every g ∈ G, k ∈ {0, 1}, we have P
(n+1)
k,g (A) = P

(n)
k,g (A).

Requirement 4. simply imposes the condition that the group action considered is the

same for all n ∈ N. As a consequence of 3. and 4., the probability measures P
(n)
k,g

and P
(n+1)
k,g satisfy Kolmogorov’s compatibility condition for all g ∈ G, k ∈ {0, 1}

which means that there exists a probability measure Pk,g on (Ω,F) (under which
〈X(m)〉, Xm+1, Xm+2, . . . is a random process), defined as in the beginning of Section 4,

whose marginals for n ≥ m coincide with P
(n)
k,g , and there exist measures P̄0 and P̄1 on

(Ω,F) whose marginals for n ≥ m coincide with P̄
(n)
0 and P̄

(n)
1 . We have thus defined

a set H0 and H1 of hypotheses on (Ω,F) and the corresponding Bayes marginals P̄0

and P̄1 and are back in our general setting. It is easily verified that the 1- and 2-sample
Bayesian t-tests both satisfy all these assumptions: in Example 1, take m = 1 and
〈Xm〉 = R \ {0}; in Example 1, take m = 2 and 〈Xm〉 = R

2 \ {(a, a) : a ∈ R}. The
conditions can also be verified for the variety of examples considered by Berger et al.
(1998a) and Bayarri et al. (2012). In fact, our initial sample xm ∈ 〈Xm〉 is a variation of
what they call a minimal sample; by excluding ‘singular’ outcomes from Xm to ensure
that the group acts properly on 〈Xm〉, we can guarantee that the initial sample is of
fixed size. The size of the minimal sample can be larger, on a set of measure 0 under all
P ∈ H0 ∪H1, e.g. if, in Example 1, X1 = X2. We chose to ensure a fixed size m since
it makes the extension to random processes considerably easier.

In Section 5.1, underneath Example 1 we already outlined how a composite alterna-
tive hypothesis can be reduced to a hypothesis with just a free nuisance parameter (or
parameter vector) g ∈ G, by putting a proper prior on all other parameters and inte-
grating them out. A similar construction for a single parameter alternative hypothesis
in the form of (23) can be applied in the non-fixed sample size case.

5.4 Strong Calibration

Consider the setting, definitions and assumptions of the previous subsection, with the
additional assumptions and definitions made in the beginning of Section 4.3, in particu-
lar the assumption of a.s. finite stopping time. For simplicity, from now on, we shall also
assume equal prior odds, π(H0) = π(H1) = 1/2. We will now show a strong calibration

theorem for the Bayes factors βn = (dP̄
(n)
0 )/(dP̄

(n)
1 )(Xn) defined in terms of the Bayes

marginals P̄0 and P̄1 with the right Haar prior. Thus βτ is defined as in (15) with β in
the role of B.
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Theorem 8 (Strong calibration under optional stopping). Let τ be a stopping time
satisfying our requirements, such that additionally, for each n > m, the event {τ = n}
is Gn-measurable. Then, adopting the notation of (16), for all g ∈ G, for P

[βτ ]
0,g -almost

every b > 0, we have:
dP

[βτ ]
1,g

dP
[βτ ]
0,g

(b) = b. That means that the posterior odds remain cali-

brated under every stopping rule τ adapted to the quotient space filtration Gm,Gm+1, . . .,
under all P0,g.

Proof. Fix some g ∈ G. We simply first apply Lemma 7 with Vn = 1{τ=n}, which gives
that the premise (17) of Lemma 1 holds with c = 1 and βn in the role of Bn (it is here
that we need that τn is Gn-measurable, otherwise we could not apply Lemma 7 with
the required definition of Vn). We can now use Lemma 1 with P0,g in the role of P0 to
reach the desired conclusion for the chosen g. Since this works for all g ∈ G, the result
follows.

Example 1 (Continued: Admissible and Inadmissible Stopping Rules). We obtain
strong calibration for the one-sample t-test with respect to the nuisance parameter
σ (see Example 1 above) when the stopping rule is adapted to the quotient filtration
Gm,Gm+1, . . . . Under each Pk,g ∈ Hk, the Bayes factors βm, βm+1, . . . define a random
process on Ω such that each βn is Gn-measurable. This means that a stopping time
defined in terms of a rule such as ‘stop at the smallest t at which βt > 20 or t = 106’ is
allowed in the result above. Moreover, if the stopping rule is a function of a sequence of
maximal invariants, like x1/|x1|, x2/|x1|, . . ., it is adapted to the filtration Gm,Gm+1, . . .
and we can likewise apply the result above. On the other hand, this requirement is vi-
olated, for example, by a stopping rule that stops when

∑j
i=1(xi)

2 exceeds some fixed
value, since such a stopping rule explicitly depends on the scale of the sampled data.

5.5 Frequentist Optional Stopping

The special case of the following result for the one-sample Bayesian t-test was proven
in the master’s thesis (Hendriksen, 2017). Here we extend the result to general group
invariances.

Theorem 9 (Frequentist optional stopping for composite null hypotheses with group
invariance). Under the same conditions as in Section 5.4, let τ be a stopping time such
that, for each n > m, the event {τ = n} is Gn-measurable. Then, adopting the notation

of (16), for all g ∈ G, the stopped Bayes factor satisfies EP0,g [βτ ] =
∫
R>0

c dP
[βτ ]
0,g (c) = 1,

so that, by the reasoning above Proposition 4, we have for all g ∈ G: P0,g(
1
βτ

≤ α) ≤ α.

Proof. We have∫
R>0

c dP
[βτ ]
0,g (c) =

∫
R>0

dP
[βτ ]
1,g

dP
[βτ ]
0,g

(c)dP
[βτ ]
0,g (c) =

∫
R>0

dP
[βτ ]
1,g (c) = 1,

where the first equality follows directly from Theorem 8 and the final equality follows
because P1,g is a probability measure, integrating to 1.
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Analogously to Corollary 5, the desired result now follows by plugging in a particular
stopping rule: let S :

⋃∞
i=m X i → {0, 1} be the frequentist sequential test defined by

setting, for all n > m, xn ∈ 〈Xn〉: S(xn) = 1 if and only if βn ≥ 1/α.

Corollary 10. Let t∗ ∈ {m + 1,m + 2, . . .} ∪ {∞} be the smallest t∗ > m for which
β−1
t∗ ≤ α. Then for arbitrarily large T , when applied to the stopping rule τ := min{T, t∗},

we find that for all g ∈ G:

P0,g(∃n,m < n ≤ T : S(Xn) = 1 | xm) = P0,g(∃n,m < n ≤ T : β−1
n ≤ α | xm) ≤ α.

The corollary implies that the test S is robust under optional stopping in the fre-
quentist sense relative to H0 (Definition 1).

Example 1 (continued). When we choose a stopping rule that is (Gm,Gm+1, . . .)-
measurable, the hypothesis test is robust under (semi-)frequentist optional stopping.
This holds for example, for the one- and two-sample t-test (Rouder et al., 2009), Bayesian
ANOVA (Rouder et al., 2012), and Bayesian linear regression (Liang et al., 2008). Again,
for stopping rules that are not (Gm,Gm+1, . . .)-measurable, robustness under frequen-
tist optional stopping cannot be guaranteed and could reasonably be presumed to be
violated. The violation of robustness under optional stopping is hard to demonstrate
experimentally as frequentist Bayes factor tests are usually quite conservative in ap-
proaching the asymptotic significance level α.

6 Concluding Remarks

We have identified three types of ‘handling optional stopping’: τ -independence, cali-
bration and semi-frequentist. We extended the corresponding definitions and results to
general sample spaces with potentially improper priors. For the special case of models
H0 and H1 sharing a nuisance parameter with a group invariance structure, we showed
stronger versions of calibration and semi-frequentist robustness to optional stopping.
Some final remarks are in order. First, one of the remarkable properties of the right Haar
prior is that, under some additional conditions on P0,g and P1,g in (22), βm = β(xm) = 1
for all xm ∈ 〈Xm〉, implying that equal prior odds lead to equal posterior odds after
a minimal sample, no matter what the minimal sample is Berger et al. (1998b). One
might conjecture that our results rely on this property, but this is not the case: in gen-
eral, one can have β(xm) �= 1, yet our results still hold. For example, in the Bayesian
t-test, Example 1, m = 1 and β(x1) = 1 can be guaranteed only if the prior πδ on
δ is symmetric around 0; but our calibration and frequentist robustness results hold
irrespective of whether it is symmetric or not.

As a second remark, it is worth noting that — as is immediate from the proofs — all
our group-invariance results continue to hold in the setting with H ′

k as in (26), and the
definition of the Bayes marginal Pk,e relative to θ′ as in (27) replaced by a probability
measure on (Ω,F) that is not necessarily of the Bayes marginal form. The results work
for any probability measure; in particular one can take the alternatives for the Bayes
marginal with proper prior that are considered in the minimum description length and
sequential prediction literature (Barron et al., 1998; Grünwald, 2007) under the name
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of universal distribution relative to {Pθ′ | θ′ ∈ Θ′}; examples include the prequential or
‘switch’ distributions considered by van der Pas and Grünwald (2018).

As a third remark, a sizeable fraction of Bayesian statisticians is wary of using
improper priors at all. An important (though not the only) reason is that their use
often leads to some form of the marginalization paradox described by Dawid et al.
(1973). It is thus useful to stress that in the context of Bayes factor hypothesis testing,
the right Haar prior is immune at least to this particular paradox. In an informal
nutshell, the marginalization paradox occurs if the following happens: (a) the Bayes
posterior π(ζ | Xn) for the quantity of interest ζ based on prior π(ζ, g) with improper
marginal on g, only depends on the data Xn through the maximal invariant Un, i.e.
π(ζ | Xn) = f(Un(X

n)) for some function f , yet (b) there exists no prior π′ on ζ such
that the corresponding posterior π′(ζ | Un(X

n)) = f(Un(X
n)). In words, the result of

Bayesian updating based on the full data Xn only depends on the maximal invariant
Un; but Bayesian updating directly based on Un can never give the same result —
a paradox indeed. While in general, this can happen even if g is equipped with the
right Haar prior [Case 1, page 199] (Dawid et al., 1973), Berger et al.’s Theorem 2.1
(reproduced in Section 5.2 in our paper) implies that it does not occur in the context
of Bayes factor testing, where ζ ∈ {H0, H1}, and H0 and H1 are null and alternatives
satisfying the requirements of Section 5. Berger’s theorem expresses that for all values

of the nuisance parameter g ∈ G, the likelihood ratio dP
[Un]
1,g / dP

[Un]
0,g (Un(X

n)) based
on Un(X

n) is equal to the Bayes factor based on Xn with the right Haar prior on g, so
that the paradox cannot occur.

Finally, as pointed out by a referee, even though our use of the right Haar prior avoids
the marginalization paradox, there are still some issues with its use. First, not all priors
on parameters of interest work well in combination with right Haar priors: in our running
Example 1, with light-tailed priors on δ such as a normal or a point prior, for fixed n,
the Bayes factor does not go to 0 as the data become increasingly extreme in the sense
that their empirical variance goes to 0 but their mean does not. This phenomenon of
information inconsistency is avoided by placing a heavy-tailed prior on δ, as advocated
by e.g. Rouder et al. (2009) and Jeffreys (1961). Many Bayesians, who think that at least
proper priors should always have an interpretation in terms of degrees-of-belief, would
object to any method (such as using right Haar priors) that induces such a restriction
on ‘reasonable’ priors. On the other hand, ‘objective’ Bayesians (Berger, 2006) would
not see any problems here, and pragmatic Bayesians may not care about information
inconsistency. A similar issue is that, like all improper priors, right Haar priors are
defined only up to a constant proportionality factor, and the Bayes factor approach
only makes sense if these factors are chosen to be the same for both models. Yet again,
for ‘objective’ Bayesians this would not count as an issue. Still, there is one issue that is
even problematic from an objective Bayes standpoint: in some cases, the same models
H0 and H1 can be generated by many different groups with different right Haar priors
(Eaton and Sudderth, 2002; Berger et al., 2008). Sometimes different groups lead to the
same Bayes factor, sometimes they do not. Our results continue to hold in that case,
but in practice, it would not be clear which Bayes factor one would want to choose.
We are currently working on an in-depth analysis of this problem. Preliminary results
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suggest that in such cases, there may in fact be a unique preferred choice for the Bayes
factor, but more work is needed to establish this with certainty.

Supplementary Material

Supplementary Material (DOI: 10.1214/20-BA1234SUPP; .pdf). The paper ends with
supplementary material (Hendriksen et al., 2020), comprising Section A containing basic
background material about groups, and Section B containing all longer mathematical
proofs.
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