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Abstract

E-variables are tools for retaining type-I error guarantee with optional stopping. We extend E-variables for
sequential two-sample tests to general null hypotheses and anytime-valid confidence sequences. We provide
implementations for estimating risk difference, relative risk and odds-ratios in contingency tables.
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1. Introduction

We consider a setting where we collect samples from two distinct groups, denoted a and b. In both

groups, data come in sequentially and are i.i.d. We thus have two data streams, Y1,a, Y2,a, . . . i.i.d. ∼ Pθa

and Y1,b, Y2,b, . . . i.i.d. ∼ Pθb where we assume that θa, θb ∈ Θ, {Pθ : θ ∈ Θ} representing some parameterized

underlying family of distributions, all assumed to have a probability density or mass function denoted by pθ

on some outcome space Y.

E-variables (Grünwald et al., 2022; Vovk and Wang, 2021) are a tool for constructing tests that keep their

Type-I error control under optional stopping and continuation. Previously, Turner et al. (2021) developed E-

variables for testing equality of both data streams, i.e. with null hypothesis ~Θ0 := {(θa, θb) ∈ Θ2 : θa = θb}.

Here we first generalize these E-variables to more general null hypotheses in which we may have θa 6= θb.

We then use these generalized E-variables to construct anytime-valid confidence sequences; these provide

confidence sets that remain valid under optional stopping (Darling and Robbins, 1967; Howard et al., 2021).

As in (Turner et al., 2021), we first design E-variables for a single block of data (Y naa , Y nbb ), where

a block is a set of data consisting of na outcomes Y naa = (Ya,1, . . . , Ya,na) in group a and nb outcomes

Y nbb = (Yb,1, . . . , Yb,nb) in group b, for some pre-specified na and nb. An E-variable is then, by definition,
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any nonnegative random variable S = s′(Y naa , Y nbb ) such that

sup
(θa,θb)∈~Θ0

EY naa ∼Pθa ,Y
nb
b ∼Pθb

[s′(Y naa , Y nbb )] ≤ 1. (1)

Turner et al. (2021) first defined such an E-variable for ~Θ0 = {(θa, θb) ∈ Θ2 : θa = θb} so that it would tend

to have high power against a given simple alternative ~Θ1 = {(θ∗a, θ∗b )}. Their E-variable is of the following

simple form (with n = na + nb):

s′(Y naa , Y nbb ) =
pθ∗a(Y naa )∏na

i=1(nan pθ∗a(Ya,i) + nb
n pθ∗b (Ya,i))

·
pθ∗b (Y nbb )∏nb

i=1(nan pθ∗a(Yb,i) + nb
n pθ∗b (Yb,i))

. (2)

These E-variables can be extended to sequences of blocks Y(1), Y(2), . . . by multiplication, and can be extended

to composite alternatives by sequentially learning (θ∗a, θ
∗
b ) from the data, for example via a Bayesian prior

on ~Θ1. The na and nb used for the j-th block Y(j) are allowed to depend on past data, but they must be

fixed before the first observation in block j occurs. For simplicity, in this note we only consider the case

with na and nb that remain fixed throughout; extension to the general case is straightforward.

By a general property of E-variables, at each point in time, the running product of block E-variables

observed so far is itself an E-variable, and the random process of the products is known as a test martingale

(Grünwald et al., 2022; Shafer, 2021). An E-variable-based test at level α is a test which, in combination

with any stopping rule τ , reports ‘reject’ if and only if the product of E-values corresponding to all blocks

that were observed at the stopping time and have already been completed, is larger than 1/α. Such a test

has a type-I error probability bounded by α irrespective of the stopping time τ that was used; see the

aforementioned references for much more detailed introductions and, for example (Henzi and Ziegel, 2021),

for a practical application.

In case {Pθ : θ ∈ Θ} is convex, the E-variable (2) has the so-called GRO-(growth-rate-optimality) prop-

erty: it maximizes, over all E-variables (i.e. over all nonnegative random variables S = s′(Y naa , Y nbb ) satisfying

(1)) the logarithmic growth rate

EY naa ∼Pθ∗a ,Y
nb
b ∼Pθ∗b

[logS] , (3)

which implies that, under (θ∗a, θ
∗
b ), the expected number of data points before the null can be rejected is

minimized (Grünwald et al., 2022).

Below, in Theorem 1 in section 2, which generalizes Theorem 1 in Turner et al. (2021), we extend (2)

to the case of general null hypotheses, ~Θ0 ⊂ Θ2, allowing for the case that the elements of ~Θ0 have two
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different components, and provide a condition under which it has the GRO property. From then onwards we

focus on what we call ‘the 2× 2 contingency table setting’ in which both streams are Bernoulli, θj denoting

the probability of 1 in group j. For this case, Theorem 2 gives a simplified expression for the E-variable and

shows that the GRO property holds if ~Θ0 ⊂ [0, 1]2 is convex. Then we will extend this E-variable to deal

with composite ~Θ1 and use this to define anytime-valid confidence sequences. We illustrate these through

simulations. All proofs are in Appendix A.

2. General Null Hypotheses

In this section, we first construct an E-variable for general null hypotheses that generalizes (2). We then

instantiate the new result to the 2× 2 case. The following development and results require {Pθ : θ ∈ Θ} to

be ‘nondegenerate’ in the sense that there exists θ ∈ Θ such that for all θ′ ∈ Θ, D(Pθ‖Pθ′) <∞. This mild

condition holds, for example, for exponential families; we tacitly assume nondegeneracy from now on.

Our goal is thus to define an E-variable for a block of n = na + nb data points with ng points in

group g, g ∈ {a, b}. For notational convenience we define, for θa, θb ∈ Θ, Pθa,θb as the joint distribution

of Y naa ∼ Pθa and Y nbb ∼ Pθb , so that pθa,θb(y
na
a , ynbb ) =

∏na
i=1 pθa(ya,i)

∏nb
i=1 pθb(yb,i) so that we can write

the null hypothesis as H0 := {Pθa,θb : (θa, θb) ∈ ~Θ0}. Our strategy will be to first develop an E–variable

for a modified setting in which there is only a single outcome, falling with probability na/n in group a

and nb/n in group b. To this end, for ~θ = (θa, θb), we define p′~θ(Y |a) := pθa(y), p′~θ(Y |b) := pθb(y), all

distributions with a ′ refering to the modified setting with just one outcome. We let W◦(~Θ0) be the set of

all distributions on ~Θ0 with finite support. For W ∈ W◦(~Θ0), we define p′W (Y |g) =
∫
p′~θ(Y |g)dW (~θ). We

set p′W (yk|g) :=
∏k
i=1 p

′
W (yi|g). We further define, for given alternative ~Θ1 = {(θ∗a, θ∗b )}, p◦(·|g), g ∈ {a, b}

to be, if it exists, the conditional probability density satisfying

EG∼Q′EY∼Pθ∗
G

[− log p◦(Y | G)] = inf
W∈W◦(~Θ0)

EG∼Q′EY∼Pθ∗
G

[− log p′W (Y | G)] (4)

with Q′(G) the distribution for G ∈ {a, b} with Q′(G = a) = na/n. Clearly we can rephrase (4) equivalently

as:

D(Q′(G, Y )‖P ◦(G, Y )) = inf
W∈W◦(~Θ0)

D(Q′(G, Y )‖P ′W (G, Y )), (5)

where D is the KL divergence. Here we extended the conditional distributions P ′W (Y |G) and P ◦(Y |G) (corre-

sponding to densities p′W (Y |G) and p◦(Y |G)) to a joint distribution by setting P ′W (G, Y ) := Q′(G)P ′W (Y |G)

(and similarly for P ◦) and we extended Q′(G, Y ) := Q′(G)Pθ∗G(Y ). We have now constructed a modified
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null hypothesis H′0 = {P ′~θ(G, Y ) : ~θ ∈ ~Θ0} of joint distributions for a single ‘group’ outcome G ∈ {a, b} and

‘data’ outcome Y ∈ Y. We let H̄′0 = {PW (G, Y ) : W ∈ W◦(~Θ0)} be the convex hull of H′0.

The p◦ satisfying (5) is commonly called the reverse information projection of Q′ onto H̄′0. Li (1999)

shows that p◦ always exists under our nondegeneracy condition, though in some cases it may represent a

sub-distribution (integrating to strictly less than one); see (Grünwald et al., 2022, Theorem 1) (re-stated

for convenience in the supplementary material) who, building on Li’s work, established a general relation

between reverse information projection and E–variables. Part 1 of that theorem establishes that if the

minimum in (4) (or (5)) is achieved by some W ◦ ∈ W◦ then p◦(·|·) = p′W◦(·|·) and, with ~θ∗ = (θa, θb), for

all ~θ ∈ ~Θ0,

EG∼Q′EY∼P ′
~θ
|G

[
p′~θ∗(Y |G)

p◦(Y |G)

]
= EG∼Q′EY∼P ′

~θ
|G

[
p′~θ∗(G, Y )

p◦(G, Y )

]
≤ 1. (6)

This expresses that p′~θ∗(Y |G)/p◦(Y |G) is an E-variable for our modified problem, in which within a single

block we observe a single outcome in group g, with g chosen with probability ng/n. If we were to interpret

the E–variable of the modified problem as in (6) as a likelihood ratio for a single outcome, its corresponding

likelihood ratio for a single block of data in our original problem with ng outcomes in group g would be:

s(ynaa , ynbb ;na, nb, (θ
∗
a, θ
∗
b ); ~Θ0) :=

p′(θ∗a,θ∗b )(y
na
a |a)p′(θ∗a,θ∗b )(y

nb
b |b)

p◦(ynaa |a)p◦(ynbb |b)
=

pθ∗a(ynaa )pθ∗b (ynbb )

p◦(ynaa |a)p◦(ynbb |b)
. (7)

The following theorem expresses that this ‘extension’ of the E-variable in the modified problem gives us an

E-variable in our original problem:

Theorem 1. S[na,nb,θ∗a,θ
∗
b ;~Θ0] := s(Y naa , Y nbb ;na, nb, (θ

∗
a, θ
∗
b ); ~Θ0) as in (7) is an E-variable, i.e. with s′(·) =

s(·;na, nb, (θ∗a, θ∗b ); ~Θ0), we have (1). Moreover, if H′0 = {P ′~θ : ~θ ∈ ~Θ0} (the null hypothesis for the modified

problem) is a convex set of distributions and Y is finite (so that H′0 = H̄′0) and furthermore H′0 is compact

in the weak topology, then (a) p◦(·|·) = p′~θ(·|·) for some ~θ ∈ ~Θ0 and (b) S[na,nb,θ∗a,θ
∗
b ;~Θ0] is the (θ∗a, θ

∗
b )-GRO

E-variable for the original problem, maximizing (3) among all E-variables.

In the case that H′0 is not convex and compact, we do not have a simple expression for p◦ in general,

and we may have to find it numerically by minimizing (4). In the 2 × 2 table (Bernoulli Θ) case though,

there are interesting H0 for which the corresponding H′0 is convex, and we shall now see that this leads to

major simplifications.
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2.1. General Convex ~Θ0 for the 2× 2 contingency table

In this subsection and the next, {Pθa,θb} refers to the 2× 2 model again, with Y = {0, 1} and θ denoting

the probability of 1. We now let ~Θ0 be any closed convex subset of [0, 1]2 that contains a point in the interior

of [0, 1]2. Again, note that the corresponding H0 = {P~θ : ~θ ∈ ~Θ0} need not be convex; still, H′0, the null

hypothesis for the modified problem as defined above, must be convex if ~Θ0 is convex, and this will allow

us to design E-variables for such ~Θ0. Let H1 = {Pθ∗a,θ∗b } with (θ∗a, θ
∗
b ) in the interior of [0, 1]2, and let

kl(θa, θb) := D(Pθ∗a,θ∗b (Y naa , Y nbb )‖Pθa,θb(Y naa , Y nbb )) =∑
ynaa ∈{0,1}na ,y

nb
b ∈{0,1}

nb

pθ∗a(ynaa )pθ∗b (ynbb ) log
pθ∗a(ynaa )pθ∗b (ynbb )

pθa(ynaa )pθb(y
nb
b )

(8)

stand for the KL divergence between Pθ∗a,θ∗b and Pθa,θb restricted to a single block (note that in the previous

subsection, KL divergence was defined for a single outcome Y ). The following result builds on Theorem 1:

Theorem 2. min(θa,θb)∈~Θ0
kl(θa, θb) is uniquely achieved by some (θ◦a, θ

◦
b ). If (θ∗a, θ

∗
b ) ∈ ~Θ0, then (θ◦a, θ

◦
b ) =

(θ∗a, θ
∗
b ). Otherwise, (θ◦a, θ

◦
b ) lies on the boundary of ~Θ0, but not on the boundary of [0, 1]2. The E–variable

(7) is given by the distribution W that puts all its mass on (θ◦a, θ
◦
b ), i.e.

s(ynaa , ynbb ;na, nb, (θ
∗
a, θ
∗
b ); ~Θ0) =

pθ∗a(ynaa )pθ∗b (ynbb )

pθ◦a(ynaa )pθ◦b (ynbb )
(9)

is an E-variable. Moreover, this is the (θ∗a, θ
∗
b )-GRO E-variable relative to ~Θ0.

We can extend this E-variable to the case of a composite H1 = {Pθa,θb : (θa, θb) ∈ ~θ1} by learning the

true (θ∗a, θ
∗
b ) ∈ ~θ1 from the data (Turner et al., 2021). We thus replace, for each j = 1, 2, . . ., for the block

Y(j) consisting of na points Y(j),a,1, . . . , Y(j),a,na in group a and nb points Y(j),b,1, . . . , Y(j),b,nb in group b, the

‘true’ θ∗g for g ∈ {a, b} by an estimate θ̆g | Y (j−1) based on the previous j − 1 data blocks. The E-variable

corresponding to m blocks of data then becomes

S
(m)

[na,nb,W1;~Θ0]
=

m∏
j=1

na∏
i=1

pθ̆a|Y (j−1)(Y(j),a,i)

pθ̆◦a|Y (j−1)(Y(j),a,i)

nb∏
i=1

pθ̆b|Y (j−1)(Y(j),b,i)

pθ̆◦b |Y (j−1)(Y(j),b,i)
(10)

where, for g ∈ {a, b}, θ̆g|Y (j−1) can be an arbitrary estimator (function from Y (j−1) to θg) and (θ̆◦a |

Y (j−1), θ̆◦b | Y (j−1)) is defined to achieve min(θa,θb)∈~Θ0
D(Pθ̆a|Y (j−1),θ̆b|Y (j−1)(Y naa , Y nbb )‖Pθa,θb(Y naa , Y nbb )).

No matter what estimator we choose, (10) gives us an E-variable. In Section 3, as in (Turner et al.,
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2021), we implement this estimator by fixing a prior W and using the Bayes posterior mean, θ̆g|Y (j−1) :=

Eθg∼W |Y (j−1) [θg]. Let us now illustrate Theorem 2 for two choices of ~Θ0.

~Θ0 with linear boundary. First, we let ~Θ0(s, c), for s ∈ R, c ∈ R, stand for any straight line through

[0, 1]2 : ~Θ0(s, c) := {(θa, θb) ∈ [0, 1]2 : θb = s + cθa}. This can be extended to ~Θ0(≤s, c) :=
⋃
s′≤s

~Θ0(s′, c)

and similarly to ~Θ0(≥s, c) :=
⋃
s′≥s

~Θ0(s′, c). For example, we could take ~Θ0 = ~Θ0(s, c) to be the solid line

in Figure 1(a) (which would correspond to s = 0.1, c = 1), or the whole area underneath the line (~Θ0(≤ s, c))

including the line itself, or the whole area above it including the line itself (~Θ0(≥s, c)).

Now consider a ~Θ0(s, c) that has nonempty intersection with the interior of [0, 1]2 and that is separated

from the point alternative (θ∗a, θ
∗
b ), i.e. min(θa,θb)∈~Θ0

kl(θa, θb) > 0. Simple differentiation gives that the

minimum is achieved by the unique (θ◦a, θ
◦
b ) ∈ ~Θ0 satisfying:

na

(
−θ
∗
a

θ◦a
+

1− θ∗a
1− θ◦a

)
+ nb · c ·

(
−θ
∗
b

θ◦b
+

1− θ∗b
1− θ◦b

)
= 0, (11)

which can now be plugged into the E-variable (9) if the alternative is the simple alternative, or otherwise

into its sequential form (10). In the basic case in which ~Θ0 = {(θa, θb) ∈ [0, 1]2 : θa = θb}, the solution to

(11) reduces to the familiar θ◦a = θ◦b = (naθ
∗
a + nbθ

∗
b )/n from Turner et al. (2021).

If (θ∗a, θ
∗
b ) lies above the line ~Θ0(s, c), then by Theorem 2, min(θa,θb)∈~Θ0(≤s,c) kl(θa, θb) must lie on

~Θ0(s, c). Theorem 2 gives that it must be achieved by the (θ◦a, θ
◦
b ) satisfying (11). Similarly, if (θ∗a, θ

∗
b ) lies

below the line ~Θ0(s, c), then min(θa,θb)∈~Θ0(≥s,c) kl(θa, θb) is again achieved by the (θ◦a, θ
◦
b ) satisfying (11).

(a) linear boundary (b) log odds ratio boundary

Figure 1: Examples of null hypothesis parameter spaces for two types of boundaries.
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~Θ0 with log odds ratio boundary. Similarly, we can consider ~Θ0(δ), ~Θ0(≤ δ), ~Θ0(≥δ) that correspond to a

given log odds effect size δ. That is, we now take

~Θ0(δ) :=

{
(θa, θb) ∈ [0, 1]2 : log

θb(1− θa)

(1− θb)θa
= δ

}
~Θ0(≤δ) :=

{
(θa, θb) ∈ [0, 1]2 : log

θb(1− θa)

(1− θb)θa
≤ δ
}

~Θ0(≥δ) :=

{
(θa, θb) ∈ [0, 1]2 : log

θb(1− θa)

(1− θb)θa
≥ δ
}
.

For example, we could now take ~Θ0 = ~Θ0(≤δ) to be the area under the curve (including the curve boundary

itself) in Figure 1(b), which would correspond to δ = 2. Now let δ and point alternative (θ∗a, θ
∗
b ) be such

that δ > 0 and ~Θ0(≤δ) is separated from (θ∗a, θ
∗
b ), i.e. min(θa,θb)∈~Θ0(≤δ) kl(θa, θb) > 0. Let (θ◦a, θ

◦
b ) :=

arg min(θa,θb)∈~Θ0(δ) kl(θa, θb). As Figure 1(b) suggests, ~Θ0(≤δ) is convex. Theorem 2 now tells us that

min(θa,θb)∈~Θ0(≤δ) kl(θa, θb) is achieved by (θ◦a, θ
◦
b ). Plugging these into (9) thus gives us an E-variable.

(θ◦a, θ
◦
b ) can easily be determined numerically. Similarly, if δ < 0, ~Θ0(≥δ) is convex and closed and if (θ∗a, θ

∗
b )

is separated from ~Θ0(≥δ), the (θ◦a, θ
◦
b ) minimizing KL on ~Θ0(δ) gives an E-variable relative to ~Θ0(≥δ).

3. Anytime-Valid Confidence for the 2 × 2 case

We will now use the E-variables defined above to construct anytime-valid confidence sequences. Let

δ = δ(θa, θb) be a notion of effect size such as the log odds ratio (see above) or absolute risk θb − θa or

relative risk θb/θa. A (1− α)-anytime-valid (AV) confidence sequence (Darling and Robbins, 1967; Howard

et al., 2021) is a sequence of random (i.e. determined by data) subsets CSα,(1),CSα,(2), . . . of Γ, with CSα,(m)

being a function of the first m data blocks Y (m), such that for all (θa, θb) ∈ [0, 1]2,

Pθa,θb
(
∃m ∈ N : δ(θa, θb) 6∈ CSα,(m)

)
≤ α.

We first consider the case in which for all values γ ∈ Γ that δ can take, ~Θ0(γ) := {(θa, θb) ∈ [0, 1]2 :

δ(θa, θb) = γ} is a convex set, as it will be for absolute and relative risk. Fix a prior W1 on [0, 1]2. Based

on (10) we can make an exact (nonasymptotic) AV confidence sequence

CSα,(m) =

{
δ : S

(m)

[na,nb,W1;~Θ0(δ)]
≤ 1

α

}
(12)
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where S
(m)

[na,nb,W1;~Θ0(δ)]
is defined as in (10) and is a valid E-variable by Theorem 2. To see that (CSα,(m))m∈N

really is an AV confidence sequence, note that, by definition of the CSα,(m), we have

Pθa,θb
(
∃m ∈ N : δ(θa, θb) 6∈ CSα,(m)

)
is given by

Pθa,θb

(
∃m ∈ N : S

(m)

[na,nb,W1;~Θ0(δ)]
≥ 1

α

)
≤ α,

by Ville’s inequality (Grünwald et al., 2022; Turner et al., 2021). Here the CSα,(m) are not necessarily

intervals, but, potentially loosing some information, we can make a AV confidence sequence consisting of

intervals by defining CIα,(m) to be the smallest interval containing CSα,(m). We can also turn any confidence

sequences (CSα,(m))m∈N into an alternative AV confidence sequence with sets CS′α,(m) that are always a

subset of CSα,(m) by taking the running intersection

CS′α,(m) :=
⋂

j=1..m

CSα,(j).

In this form, the confidence sequences CS′α,(m) can be interpreted as the set of δ’s that have not yet been

rejected in a setting in which, for each null hypothesis ~Θ0(δ) we stop and reject as soon as the corresponding

E-variable exceeds 1/α. The running intersection can also be applied to the intervals (CIα,(m))m∈N.

To simplify calculations, it is useful to take W1 a prior under which θa and θb have independent beta

distributions with parameters αa, βa, αb, βb. We can, if we want, infuse some prior knowledge or hopes

by setting these parameters to certain values — our confidence sequences will be valid irrespective of our

choice (Howard et al., 2021). In case no such knowledge can be formulated (as in the simulations below),

we advocate the prior, which, among all priors of the simple form asymptotically achieves the REGROW

criterion (a criterion related to minimax log-loss regret, see (Grünwald et al., 2022)), i.e for the case na =

nb = 1 we set W1 to an independent beta prior on θa and θb with γ = 0.18 as was empirically found to be

the ‘best’ value (Turner et al., 2021).

Log Odds Ratio Effect Size. The situation is slightly trickier if we take the log odds ratio as effect size,

for ~Θ0(δ) is then not convex. Without convexity, Theorem 2 cannot be used and hence the validity of AV

confidence sequences as constructed above breaks down. We can get nonasymptotic anytime-valid confidence

sequences after all as follows. First, we consider a one-sided AV confidence sequence for the submodel of
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positive effect sizes {(θa, θb) : δ(θa, θb) ≥ 0}, defining

CS+
α,(m) = {δ ≥ 0 : S

(m)

[na,nb,W1;~Θ0(≤δ)]
≤ α−1, }

where we note that ~Θ0(≤ δ) is convex (since δ ≥ 0) and also contains (θa, θb) with δ(θa, θb) < 0. This

confidence sequence can give a lower bound on δ. Analogously, we consider a one-sided AV confidence

sequence for the submodel {(θa, θb) : δ(θa, θb) ≤ 0}, defining

CS−α,(m) = {δ ≤ 0 : S
(m)

[na,nb,W1;~Θ0(≥δ)]
≤ α−1},

and derive an upper bound on δ. By Theorem 2, both sequences (CS+
α,(m))m=1,2,... and (CS−α,(m))m=1,2,...

are AV confidence sequences for the submodels with δ ≥ 0 and δ ≤ 0 respectively. Defining CSα,(m) =

CS+
α,(m) ∪CS−α,(m), we find, for (θa, θb) with δ(θa, θb) > 0,

Pθa,θb
(
∃m ∈ N : δ(θa, θb) 6∈ CSα,(m)

)
= Pθa,θb

(
∃m ∈ N : δ(θa, θb) 6∈ CS+

α,(m)

)
≤ α,

and analogously for (θa, θb) with δ(θa, θb) < 0. We have thus arrived at a confidence sequence that works

for all δ, positive or negative.

3.1. Simulations

In this section some numerical examples of confidence sequences for the two types of effect sizes are

given. All simulations were run with code available in our software package (Ly et al., 2022).

Risk difference. Risk difference is defined as the difference between success probabilities in the two streams:

δ = θb − θa. Figure 2 shows running intersections of confidence sequences with δ as the risk difference for

simulations for various distributions and stream lengths. These sequences are constructed by testing null

hypotheses based on ~Θ0(s, c), with c = 1 and s = δ. CIα,(m) for the risk difference on ~Θ0 is an interval,

corresponding to the ‘beam’ of (θa, θb) ∈ [0, 1]2 bounded by the lines θb = θa + δl and θb = θa + δr with

δl > δr being values such that S
(m)

[na,nb,W1;~Θ0(δl)]
= S

(m)

[na,nb,W1;~Θ0(δr)]
= 1/α. Figure B.1 in the Appendix

illustrates that the running intersection indeed improves the confidence sequence, albeit slightly.

Relative risk. Relative risk is defined as the ratio between the success probabilities in group b and a:

δ = θb/θa. Hence, confidence sequences for this effect size measure can again be constructed using the linear

9



(a) Risk difference

(b) Relative risk

Figure 2: Depiction of parameter space with running intersection of confidence sequence for data generated under various effect
sizes, at different time points m in a data stream. The asterisks indicate the maximum likelihood estimator at that time point.
The significance threshold was set to 0.05. The design was balanced, with data block sizes na = 1 and nb = 1.

boundary form ~Θ0(s, c) again, but now with s = 0 and c = δ. Figure 2 shows running intersections of

confidence sequences with δ as the relative risk.

Log odds ratio boundary. If the maximum likelihood estimate based on Y (m) lies in the upper left corner

as in Figure 3(a), the confidence sets CS(m) we get at time m have a one-sided shape such as the shaded

region, or the shaded region in Figure 3(c), if the estimate lies in the lower right corner. Again, we can

improve these confidence sequences by taking the running intersection; running intersections over time are

illustrated in Figures 3(b) and 3(d).

10



(a) CS+ at n = 500, true lOR
2.5

(b) Running lower bound CS+,
true lOR 2.5

(c) CS− at n = 500, true lOR
−2.5

(d) Running upper bound CS−,
true lOR −2.5

Figure 3: One-sided confidence sequences for odds ratios. 500 data blocks were generated under Pθa,θb with θa = 0.2 and log
of the odds ratio (lOR) 2.5 for figures a and b, and θa = 0.8 and lOR −2.5 for figures c and d. The asterisks indicate the
maximum likelihood estimator at n = 500. The significance threshold was set to 0.05. The design was balanced, with data
block sizes na = 1 and nb = 1. Note that CS− is empty for (a) and (b) and CS+ for (c) and (d) in these confidence sequences.
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4. Conclusion

We have shown how E-variables for data streams can be extended to general null hypotheses and non-

asymptotic always-valid confidence sequences. We specifically implemented the confidence sequences for the

2× 2 contingency tables setting; the resulting confidence sequences are efficiently computed and show quick

convergence in simulations. For estimating risk differences or relative risk ratios between proportions in

two groups, to our knowledge, such exact confidence sequences did not yet exist. For the log odds ratio we

could also have used the sequential probability ratio (SPR) in Wald’s SPR test (Wald, 1945) test, which

can be re-interpreted as a (product of) E-variables (Grünwald et al., 2022). However, the SPR does not

satisfy the GRO property making it sub-optimal (see also (Adams, 2020)); moreover, as should be clear from

the development, our method for constructing confidence sequences can be implemented for any effect size

notion with convex rejection sets ~Θ0(≤ δ) and ~Θ0(≥ δ), not just the log odds ratio. A main goal for future

work is to use Theorem 2 to provide such sequences for sequential two-sample settings that go beyond the

2× 2 table.
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Appendix

A. Proofs

Both proofs below use Theorem 1 of Grünwald et al. (2022) and a direct corollary (called Corollary 2

by Grünwald et al. (2022)), which we re-state here, for convenience, combined as a single statement. Recall

that we use notation PW :=
∫
P~θdW (~θ).

Theorem (Theorem 1 of Grünwald et al. (2022)). Let Y be a random variable taking values in a set Y.

Suppose Q is a probability distribution for Y with density q that is strictly positive on all of Y and let

H0 = {P~θ : ~θ ∈ ~Θ0} be a set of distributions for Y where each P~θ has density p~θ. Let W0 be the set of

all distributions on ~Θ0. Assume infW0∈W0(~Θ0)D(Q‖PW0
) < ∞. Then (a) there exists a (potentially sub-)

distribution P ∗0 with density p∗0 such that

S∗ :=
q(Y )

p∗0(Y )

is an E-variable (p∗0 is called the Reverse Information Projection (RIPr) of q onto {pW : W ∈ W0}).

Moreover, (b), S∗ satisfies

sup
S∈E(~Θ0)

EY∼Q[logS] = EY∼Q[logS∗] = inf
W0∈W0(~Θ0)

D(Q‖PW0
) = D(Q‖P ∗0 ). (A.1)

(where E(~Θ0) is the set of all E-variables relative to null hypothesis H0) and S∗ is thus the Q-GRO E-

variable for Y . If the minimum is achieved by some W ∗0 , i.e. D(Q‖P ∗0 ) = D(Q‖PW∗0 ), then P ∗0 = PW∗0 .

Moreover, (c), if there exists an E-variable S of the form q(Y )/pW0(Y ) for some W0 ∈ W0 then W0 must

achieve the infimum in (A.1) and S must be essentially equal to S∗ in the sense that for all P ∈ H0 ∪ {Q},

P (S∗ = q(Y )/pW0
(Y )) = 1. Similarly (d), if there exists a W ∗0 ∈ W0 that achieves the infimum in (A.1)

then S = q(Y )/pW∗0 (Y ) is an E-variable and S is again essentially equal to S∗.

Proof of Theorem 1. Part 1 The real idea behind the proof is the formulation of the modified testing problem

in which only a single outcome per block is observed. This we already did in the main text. Linking the

two is simply the last, very simple step, with analogies to the proof of Part 1 of Theorem 1 in Turner et al.

(2021).

Let na, nb ∈ N, n := na + nb and let u, v ∈ R+. Suppose that nau+ nbv ≤ n. Then unavnb ≤ 1, which

follows immediately from applying Young’s inequality to una/n, vnb/n but can also be derived directly by

writing v as function of u and differentiating log(unavnb) to u.
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Further, by independence, for (θa, θb) ∈ ~Θ0,

EY naa ∼Pθa ,Y
nb
b ∼Pθb

[s′(Y naa , Y nbb )] =

EY naa ∼Pθa

[
pθ∗a(Y naa )

p◦(Y naa |a)

]
·EY

nb
b ∼Pθb

[
pθ∗b (Y nbb )

p◦(Y nbb |b)

]
=(

EY∼Pθa

[
pθ∗a(Y )

p◦(Y |a)

])na
·
(

EY∼Pθb

[
pθ∗b (Y )

p◦(Y |b)

])nb
=(

EY∼P ′θ|a

[
p′θ∗(Y |a)

p◦(Y |a)

])na
·
(

EY∼P ′
θ|b

[
p′θ∗(Y |b)
p◦(Y |b)

])nb
. (A.2)

Combining the two facts stated above, (6) implies that the latter quantity is bounded by 1.

Part 2 By lower-semicontinuity of the KL divergence in its second argument (Posner’s theorem, used

as in Grünwald et al. (2022)) the infimum in (4) is achieved by some prior distribution W ◦ so that by

Theorem 1 of Grünwald et al. (2022) (part (b) in the formulation above), p◦(· | ·) = p′W◦(· | ·) and hence also

P ◦(G, Y ) = P ′W◦(G, Y ). By convexity of H′0 and finiteness of the support of P ′~θ(G, Y ), there must be some

~θ such that P ′W◦(G, Y ) = P~θ(G, Y ) and hence also p′W◦(· | ·) = p′~θ(· | ·), which shows (a). This means that

we have now created an E-variable for the original problem which can be written as pθ∗a,θ∗b /pW0
with pW0

a

prior distribution on ~θ0 (namely, the one that puts mass 1 on ~θ). (b) is then an immediate consequence of

Theorem 1 of Grünwald et al. (2022) (part (c) in the formulation above). (note that we cannot draw this

conclusion if H′0 is not convex; for then the distribution p′W◦ may not correspond to the distribution pW◦

in the original problem — this correspondence is only guaranteed if p′W◦ coincides with some p′~θ.

Proof of Theorem 2. Recall that we assume that ~Θ0 is convex and compact. We set kl′(θa, θb) :=

D(P ′θ∗a,θ∗b
‖P ′θa,θb) where D is the KL divergence as in (5), i.e. for the modified setting in which P ′θa,θb

is a distribution on a single outcome, as discussed before Theorem 1. For the 2×2 model this KL divergence

can be written explicitly as

D(P ′θ∗a,θ∗b ‖P
′
θa,θb

) =
na
n

∑
ya∈{0,1}

pθ∗a(ya) log
pθ∗a(ya)

pθa(ya)
+
nb
n

∑
yb ∈ {0, 1}pθ∗b (yb) log

pθ∗b (yb)

pθb(yb)
(A.3)

From (8) we now see that nkl′(θa, θb) = kl(θa, θb). We will prove the theorem with kl replaced by kl′ and

H0 by H′0; since the two KL’s agree up to a constant factor of n, all results transfer to the kl mentioned in

the theorem statement.

Since ~Θ0 is compact in the Euclidean topology and all distributions in H′0 can be represented as 2-

dimensional vectors, i.e. they have common and finite support, we must have that H0 is compact in the
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weak topology so we can use the lower-semicontinuity of KL divergence in its second argument (Posner’s

theorem) as in (Grünwald et al., 2022) to give us that the minimum KL divergence minkl′(θa, θb) is achieved

by some (θ◦a, θ
◦
b ). Since KL divergence is strictly convex in its second argument and H′0 is convex (this is the

place where we need to use kl′ rather than kl: H0 may not be convex!), the minimum must be achieved

uniquely. Since KL divergence kl′(θa, θb) is nonnegative and 0 only if (θa, θb) = (θ∗a, θ
∗
b ), it follows that

(θ◦a, θ
◦
b ) = (θ∗a, θ

∗
b ) if minkl(θa, θb) = 0. Otherwise, since we assume (θ∗a, θ

∗
b ) to be in the interior of [0, 1]2,

kl(θa, θb) = ∞ iff (θa, θb) lies on the boundary of [0, 1]2. Thus, (θ◦a, θ
◦
b ) must lie in the interior of [0, 1]2

as well. (θ◦a, θ
◦
b ) cannot lie in the interior of ~Θ0 though: for any point (θa, θb) in the interior of ~Θ0 we can

draw a line segment between this point and (θ∗a, θ
∗
b ). Differentiation along that line gives that kl′(θa, θb)

monotonically decreases as we move towards (θ∗a, θ
∗
b ), so the minimum within the closed set ~Θ0 must lie on

its boundary.

It remains to show that (9) is the (θ∗a, θ
∗
b )-GRO E-variable relative to H0. To see this, note that, by

convexity of H′0, from Theorem 1, we must have that the GRO E-variable for this original problem is of the

form
pθ∗a(ynaa )pθ∗b (ynbb )

pθ+a (ynaa )pθ+b
(ynbb )

for some (θ+
a , θ

+
b ). The result then follows again by Theorem 1 of Grünwald et al. (2022) (part (c) in the

formulation above): this shows that the distribution W0 that puts mass 1 on (θ+
a , θ

+
b ) minimizes, among all

distributions W on ~Θ0, D(Pθ∗a,θ∗b ‖PW ). Since the set of such distributions includes all distributions that put

mass 1 on some (θa, θb) ∈ ~Θ0, we must have that (θ+
a , θ

+
b ) = (θ◦a, θ

◦
b ).
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B. Extended simulation results

Figure B.1: Confidence sequence with and without running intersection, for data generated under Pθa,θa+δ with θa = 0.05,
for a data stream of length 100. The significance threshold was set to 0.05. The design was balanced, with data block sizes
na = 1 and nb = 1.
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