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Abstract 
Science is justly admired as a cumulative process (“standing on the 
shoulders of giants”), yet scientific knowledge is typically built on a 
patchwork of research contributions without much coordination. This 
lack of efficiency has specifically been addressed in clinical research by 
recommendations for living systematic reviews and against research 
waste. We propose to further those recommendations with ALL-IN 
meta-analysis: Anytime Live and Leading INterim meta-analysis. ALL-
IN provides statistical methodology for a meta-analysis that can be 
updated at any time—reanalyzing after each new observation while 
retaining type-I error guarantees, live—no need to prespecify the 
looks, and leading—in the decisions on whether individual studies 
should be initiated, stopped or expanded, the meta-analysis can be 
the leading source of information. We illustrate the method for time-
to-event data, showing how synthesizing data at interim stages of 
studies can increase efficiency when studies are slow in themselves to 
provide the necessary number of events for completion. The meta-
analysis can be performed on interim data, but does not have to. The 
analysis design requires no information about the number of patients 
in trials or the number of trials eventually included. So it can breathe 
life into living systematic reviews, through better and simpler 
statistics, efficiency, collaboration and communication
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The scientific response to the coronavirus disease 2019  
(Covid-19) pandemic constitutes a major gamble. In the United 
States, for example, the funding program for vaccine devel-
opment did not put money on a single vaccine, but on six  
different ones. They purposely took “multiple shots on goal” 
according to Larry Corey of the National Institutes of Health  
(NIH) Covid-19 Prevention Network in an interview with  
STAT (Branswell, 2021). Vaccine development is not a sure 
thing, and so their strategy needed to be robust enough to  
just “let the chips fall”. Also in the search for treatments, the 
scientific community had to hedge its bets. Clinical trials com-
peted for resources and patients, and had to continuously 
change course when new information arrived. In contrast to  
vaccines, however, in most countries a strategy to find treat-
ments was lacking. Many clinical trials suffered from “poor 
questions, poor study design, inefficiency of regulation and 
conduct, and non or poor reporting of results”: research waste 
(Glasziou et al., 2020). We believe that more strategic thinking 
can benefit a future pandemic response as well as non-pandemic  
evidence-based medicine, as uncertainty is often a given. Hon-
est scientific bets can breathe life into the approach called  
living systematic reviews that aims to keep the evidence record 
up-to-date (Elliott et al., 2017) and the medical guidelines cur-
rent (Akl et al., 2017). We propose to make those bets by  
using ALL-IN meta-analysis in clinical trial design, monitoring  
and reporting.

ALL-IN meta-analysis stands for Anytime Live and Leading  
INterim meta-analysis. The Anytime aspect provides analy-
sis that controls type-I error in testing and coverage in inter-
val estimation regardless of the decision making along the way, 
and so regardless of any stopping rules or accumulation bias  
processes (Ter Schure & Grünwald, 2019). The Live aspect 
prevents research waste caused by meta-analyses that are  
out-of-date, which is often the case in retrospective meta-analysis.  
The synthesis can be a bottom-up collaboration of trials, as 
well as a prospective top-down statistical analysis for decision  
making. The Leading aspect allows the systematically col-
lected evidence included so far to drive the necessity and 
design of new trials. Finally, the INterim aspect is new in  
meta-analysis and makes for effortless combination of trials 
while they are still ongoing. What is more, ALL-IN meta-analysis  
is also literally ALL-IN since any number of new studies can be 
included; it has an unlimited horizon. Like the use of the law 
of iterated logarithm in meta-analysis, proposed by Lan et al.,  
2003, Hu et al., 2007, this property goes back to early work by  
Robbins and colleagues (Robbins, 1970). We illustrate this in 
the setting of time-to-event data, where waiting for new events 
is an inherent challenge of clinical trials. Combining trials early 
can prevent delays if studies are slow in themselves to com-
plete the necessary number of events. ALL-IN has advantages 
in four categories: statistics, efficiency, collaboration and com-
munication. We introduce all four briefly (page 4–5) before we 
go into more detail, but first illustrate the language of betting  
for single trials studying a Covid-19 vaccine.

A single trial: the FDA game
On June 30th, 2020, the US Food and Drug Administration 
(FDA) published its guidance document on “Development and  
Licensure of Vaccines to Prevent Covid-19” (FDA, 2020). This 

set the goals for any Phase III clinical trial betting on a protective  
effect of a vaccine against Covid-19. The guidance document  
advised on the definition of events of confirmed (sympto-
matic) SARS-CoV-2 infection for the trials to be counting. 
And in counting those, the document prescribed the two things 
to achieve: (1) at least a vaccine efficacy (VE) of 50% and  
(2) evidence against a null hypothesis of ≤

 
30% VE (FDA, 2020,  

p. 14). Most Covid-19 vaccine trials randomized large num-
bers of participants 50:50 vaccine:placebo such that we can 
assume that also throughout the trial the participants at risk 
stayed approximately balanced. According to the definition of  
SARS-Cov-2 infections, we start counting once a participant  
has a confirmed infection after being fully vaccinated for at 
at least a number of days, e.g. 7 days in the Pfizer-BioNTech  
trial (Polack et al., 2020). This is also when a (virtual) bet 
could start. In the following we reinterpret the design for the  
Covid-19 vaccine trials in the language of betting.

Each new event carries evidence that we express by a betting 
score. We make a (virtual) investment on one of the two out-
comes: either the next event occurs in the vaccine group or it 
occurs in the placebo group. If there is no effect of the vaccine  
whatsoever, the 50:50 risk set ensures that the infected par-
ticipant has 0.5 a chance to be vaccinated and 0.5 a chance to 
be a placebo. Yet, following the FDA, we do not only want to 
rule out an ineffective vaccine, but also reject the hypothesis 
that the vaccine has an effect that is too small—set as the null  
hypothesis of (at most) 30% VE. In that case each newly 
observed infection has slightly smaller chance to be a vacci-
nated participant. That probability to be in the vaccine group 
is 0.41, since each placebo group member has a 100% risk of  
Covid-19 and a vaccine group member has 100−30 = 70% of the 
risk, which is a fraction 0.41 of the total risk (70/(100 + 70)).  
So if the VE is too small to be of interest we expect (at least) a 
fraction 0.41 of Covid-19 events to occur in the vaccine group  
and (at most) 0.59 in placebo.

How do we bet against that and win if the vaccine has a much 
larger protective effect? We are betting against the probability  
0.41 of the next Covid-19 event to occur in the vaccine group. 
If this probability actually is that large (the vaccine is not very  
protective; the null hypothesis) we do not want the game to be  
favorable under any strategy, just like the casino does not want 
any gambler to earn a salary playing the roulette wheel. On 
the other hand, we are betting in favor of a much smaller prob-
ability for the vaccine group. If this probability is smaller (the  
vaccine is protective; the alternative hypothesis) we do want 
to win money, just like a professional poker player who makes 
a salary out of gambling well. We use the betting scores to  
decide whether the vaccine is a real deal-breaker (the scores 
behave like the salary of a professional poker player) or  
whether it is not effective enough (the scores behave like any-
one playing the roulette wheel). To ensure that our betting  
scores can show either case, we first design the game such that 
it is fair—under the null hypothesis—and then optimize play-
ing the game with a strategy that is profitable —under the  
alternative.

Designing a fair game under the null hypothesis Consider  
gambling at the roulette table where the vaccine trial anal-
ogy is like betting on red (vaccine) or black (placebo). Betting  
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correctly doubles your investment, betting incorrectly loses 
everything you risked. Assuming no house edge (no 0 or 00 
on the roulette wheel) and an initial €100 you do not expect 
to increase your investment, since you have 0.5 a chance of  
doubling (2 · €100) and 0.5 a chance of losing all (0 · €100). 
Whether you bet everything on black or red, in expectation  
the betting score after one round is (0.5·2+0.5·0)·€100, which  
is the initial investment €100. To achieve the same thing bet-
ting against the 0.41:0.59 probabilities instead of 0.5:0.5, your 
investment needs to multiply by 2.4 (1/0.41) for vaccine and  
1.7 (1/0.59) for placebo. If you bet everything on vaccine you 
have 0.41 chance of multiplying by 2.4 (2.4 · €100) and 0.59 
chance of losing all (0 · €100) and if you bet everything on  
placebo you have 0.59 chance of multiplying by 1.7 (1.7·€100)  
and 0.41 chance of losing all (0·€100). The expected betting 
score after one round is again the initial investment for both:  
(0.41·1/0.41+0.59·0)·€100 and (0.59 · 1/0.59 +0.41 · 0) · €100. 
Hence, at either the roulette table or in this FDA game, by 
design the game is fair and does not favor us. After all, if our 
observed infections land on the vaccine and control group with 
the probabilities 0.41:0.59, like a spin of the roulette wheel 
on black and red with 0.5:0.5, we do not expect to claim an  
effective vaccine.

Optimize playing the game under the alternative hypothesis  
How do we win as fast and as much as possible if our observed 
infections do not behave like a roulette wheel? It has been 
known since the work of Kelly (1956) and Breiman (1961)  
that the best way to increase your capital in the long run is to 
not bet all your (virtual) investment €100 on one of the two  
possible outcomes (red/vaccine or black/placebo) but to divide 
it based on the odds that make the game favorable to you.  
So our focus needs to be on the minimal VE of 50% from the  
FDA guidance. In the scenario of 50% VE, the probability 
that the next Covid-19 case is in the vaccine group is 1/3: if we  
set the risk of Covid-19 for a placebo group member to 100%, a 
vaccine group member has 100−50 = 50% of that risk, which is 
1/3 of the total risk (50/(100 + 50)). Kelly (1956) and Breiman  
(1961) urge us to invest one-third (1/3 · €100) on observing  
the next infection in the vaccine group and two-thirds (2/3 · €100)  
on placebo.

Likelihood ratios If we bet this way we can rewrite our betting 
scores in terms of a likelihood ratio. We first show this for the  
red-black roulette game where we double what we had put 
at risk on either black or red if the spin of the roulette wheel  
outputs the color we bet on. Just like in our strategy in the FDA 
game, we put 1/3 · €100 on red and 2/3 · €100 on black, so we  
win the following if the ball X lands on either red or black:

|( )1/31
2 100 100

|3 ( )1/2
|( )1/322 100 100
|3 ( )1/2

X
X

X
X

X
X

= ⋅ ⋅ = ⋅

= ⋅ ⋅ = ⋅

red

black

L

L

L

L

€ €

€ €

The Bernoulli 1/3-likelihood 𝔏(1/3 | X) assigns likelihood 1/3 
when is X = red and 2/3 when is X = black. So if our strategy is 
to invest 1/3-2/3 in roulette, our payout is our initial investment  

€100 multiplied by the likelihood ratio, whether X is red  
or black.

|( )50% VE1
2.4 100 100

3 ( | )30% VE

|( )50% VE21.7 100 100
3 ( | )30% VE

X
X

X
X

X
X

= ⋅ ⋅ = ⋅

= ⋅ ⋅ = ⋅
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L

L

L

L
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€ €

The likelihood for 50% VE (𝔏(50% VE | X)) assigns likelihood  
1/3 when is X = vaccine and 2/3 when is X = placebo.  
Similarly, the likelihood for 30% VE (𝔏(30% VE | X)) 
assigns likelihood 0.41 when is X = vaccine and 0.59 when is  
X = placebo. Hence if our strategy is to invest 1/3-2/3 in the  
FDA game, our payout is also our initial investment €100 multi-
plied by the likelihood ratio, whether X is vaccine or placebo.

Reinvesting We assume now that we start with an initial  
(virtual) investment of €1 instead of €100, to easily assess our 
winnings by the factor with which we multiply our initial invest-
ment. At the first observation we bet €0.33 on vaccine and  
€0.66 on placebo. After we observe the event in the pla-
cebo group we lose our €0.33 bet on vaccine and multiply our 
€0.66 on placebo by 1.7 to €1.13. The likelihood ratio between 
our 30% VE alternative hypothesis and our 50% VE null  
hypothesis— so 𝔏(50% VE | X )/𝔏(30% VE | X )—is also about 
1.13, so multiplying our initial investment of €1 into €1.13.  
On the other hand, if we observe the event in the vaccine 
group we lose our €0.66 bet on a placebo event and multiply  
our €0.33 on vaccine by 2.4 to €0.81. The likelihood ratio 
of a vaccine event multiplies our investment by 0.81. After 
each observed event we reinvest what we have left in the new  
bet, so multiply that with the next likelihood ratio.

A winner The Pfizer/BioNTech trial observed 8 cases of 
Covid-19 among participants assigned to receive the vaccine 
and 162 cases among those assigned to placebo (Polack et al., 
2020). This totals a betting score of 0.818 · 1.13162· €1, which is  
about €118 million (note that 1.13 is really 1.13333 . . .). If 
someone wins that at the poker table, we have good reason 
to consider her a professional poker player with a favorable  
strategy, rather than a lucky beginner (Konnikova, 2020).

Meta-analysis: bottom-up collaboration
The Pfizer/BioNTech trial included more than 43 thousand  
participants (Polack et al., 2020), which is quite unique for a 
clinical trial. Usually trials are much smaller, and scientific  
consensus is built through systematic reviews and retrospec-
tively combining trials in a meta-analysis. ALL-IN is a way to 
do so by collaborating bottom-up in a strategic way that can  
be live instead of retrospective. It has advantages in four  
categories that we will first briefly introduce and then further 
elaborate on in this paper: statistics, efficiency, collaboration and  
communication.

Statistics
Not all mRNA vaccines showed such favourable results as 
the Pfizer/BioNTech vaccine. In a press release CureVac AG  
(2021) announced that the final analysis of their clinical trial 
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observed 83 events in the vaccinated group and 145 in placebo, 
so only a 43% VE (our calculations assuming a 50:50 balanced 
risk set (r = 1 in CureVac AG (2020, p. 124))1). Their protocol  
states the FDA goal in terms of a confidence interval that 
excludes a VE of 30%, adjusted for two interim analyses. That 
adjusted confidence interval at the final analysis is based on  
Zα/2

-statistic for the nominal level α/2 = 0.02281 (CureVac 
AG, 2020, Table 8). That interval is [25.3%, 57.1% VE] (our  
calculations; normal approximation interval) and, regrettably,  
does not exclude 30%. When the chips fell, this trial lost.

Statistical analyses like these are essentially all-or-nothing,  
just as any other p < α analysis. As soon as all the α is  
spent—either on a few interims and a final analysis or just on 
one fixed sample size—we cannot continue the trial and per-
form subsequent analyses without violating the type-I error  
rate. This might be a reasonable price to pay in the urgency 
of a pandemic when multiple vaccines are competing, but it 
is a very inconvenient property for clinical trials in general.  
Usually, we do want to reanalyze a clinical trial in combina-
tion with other similar trials in a meta-analysis. Yet any p < α  
procedure is equivalent to setting a rejection region for the 
test statistic and checking whether the value for the statistic  
falls within that region. This rejection region is based on a  
sampling distribution that assumes the number of studies in the 
meta-analysis, and the number of patients within each study to  
be fixed in advance. Given such a fixed sample size (but also 
for any sequential stopping rule that sets a maximum sample 
size in advance, such as α-spending), there is only one region, 
and your test statistic is either in it or not. If it is not, you are 
not allowed to redo the analyses with an increased sample size.  
This problem is recognized in approaches to control type-I  
error for living systematic reviews (Simmonds et al., 2017). 
But also if the meta-analysis is not updated, the α is essen-
tially already spent on the individual trial analyses, since the  
meta-analysis is an update of the trial analysis that is unsched-
uled and lacks type-I error control at the same level α. If  
the individual study analysis would have been conclusive, the 
meta-analysis might never be performed, and we can recognise 
that we are dealing with a situation of “meta-optional-stopping”.  
A different way to see this is by the actual sampling distribu-
tion of trials in a meta-analysis: any data-driven decision within 
the series—whether to accumulate more studies and when to 
perform the meta-analysis—changes the sampling distribution  
and invalidates the fixed-sample-size distribution assumed for  
p < α. Hence hardly any meta-analysis has valid type-I error  
control, when the accumulation of trials is based on strate-
gic decisions that introduce accumulation bias (Ter Schure &  
Grünwald, 2019).

ALL-IN meta-analysis is not all-or-nothing but can still com-
bine all available studies. In fact, it allows any number of new 
studies or patients to be included without ever spending all α.  

In terms of gambling, we can keep betting our virtual invest-
ment because we never lose everything. The CureVac AG  
(2021) results, for example, would have accumulated a betting  
score of 0.8183 · 1.13145· €1 = €1.84. This single trial is not 
very profitable, but at least it still preserves some evidence  
to reinvest in the next trial, such that we can continue to observe 
evidence and express it by betting on additional observations 
in a new trial. An ALL-IN meta-analysis can always continue 
testing the null hypothesis—with type-I error control—and  
estimating the confidence interval—with coverage guarantees.  
Importantly, for these tests and intervals the procedures are 
exactly the same no matter what decisions—so-called stopping 
rules, or accumulation bias processes (Ter Schure & Grünwald,  
2019)—are at play.

Efficiency
Lack of efficiency has been addressed in clinical research 
in many ways. Not only in the proposal of living systematic 
reviews (Elliott et al., 2017), but also in encouragements to 
present new studies in the context of existing evidence (Young &  
Horton, 2005), in advice to design new trials based on system-
atic reviews and meta-analysis (Chalmers & Lau, 1993; Goudie  
et al., 2010; Lau et al., 1995; Lund et al., 2016; Sutton et al.,  
2007) and in pleading to prevent the “scandal” of wasteful 
research into clinical questions that are already answered or not 
of primary importance (Altman, 1994; Chalmers & Glasziou,  
2009; Ioannidis et al., 2014; Glasziou & Chalmers, 2018; Glasziou 
et al., 2020, “research waste”). These calls have not been com-
pletely ignored, since clinical research has seen an increase in 
efficiency—e.g. in platform trials or adaptive meta-analysis  
(Tierney et al., 2021)—whenever collaboration is deemed possible  
prospectively. Nevertheless, most clinical trial data is synthe-
sized retrospectively, and still deserves all of the above recom-
mendations. ALL-IN meta-analysis enables these data-driven  
decisions that can make science more efficient. New studies  
can be easily informed by the synthesis of all data so far such 
that exactly the right number of patients are randomized to 
answer a research question, no more and no less. Moreover, an  
ALL-IN meta-analysis can give an account of the evidence 
at anytime and therefore facilitate prioritizing new studies, if 
more than one line of research needs additional data, but not  
all can be funded.

Collaboration
ALL-IN meta-analysis can be a live meta-analysis, since it 
does not matter how many studies will eventually be combined 
or which study will contribute most data. Whether it is based 
on summary statistics (Tierney et al., 2021) or on individual  
patient data (IPD) (Polanin & Williams, 2016), involvement 
in the same meta-analysis facilitates discussion between those  
running trials in the same line of research; especially if the 
line of research can be concluded early. Trial protocols and  
statistical analysis plans can be exchanged and scrutinized, to 
identify discrepancies between the design and the conduct of  
trials. In an ongoing meta-analysis, trials can be selected for 
inclusion before investigators are unblinded to the results, 
which helps to mitigate the problems of publication bias and  
p-hacking. If IPD analysis is possible, intense collaboration 
might also prevent mistakes and fraudulent data that would  
otherwise depreciate the meta-analysis.

1The CureVac AG (2021) press release reports a VE of 48%, so uses a different 
r (ratio of follow-up time in the two groups). In such large trials r can often 
be assumed to stay close to 1, so we set it to 1 to make all calculations sim-
pler. All our calculations are available as R code in the software availability  
statement. (Ter Schure, 2021, https: //doi.org/10.17605/OSF.IO/U6WTP).
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A meta-analysis benefits from homogeneity. With too much 
heterogeneity, it can be very disheartening to update a  
random-effects meta-analysis, since many trials are needed to 
precisely estimate the between trial variation and overcome it  
(Jackson & Turner, 2017; Kulinskaya & Wood, 2014; Sutton  
et al., 2007). Close collaboration might prevent unnecessary 
heterogeneity, if trial investigators are involved in the selection  
of trials in the meta-analysis; especially if they can advise on 
the design and conduct of new trials and align inclusion cri-
teria and endpoint definitions. A fixed-effects meta-analysis  
can conclude the research effort early. Sufficient homogeneity  
may be possible in close collaboration.

Communication
The language of betting The interpretation of evidence in 
terms of a betting score might help to communicate the uncer-
tainty in statistical results. As Shafer (2021) puts it: “When 
statistical tests and conclusions are framed as bets, everyone 
understands their limitations. Great success in betting against  
probabilities may be the best evidence we can have that the 
probabilities are wrong, but everyone understands that such suc-
cess may be mere luck.” Thinking in terms of bets also helps 
to understand when statistical analyses can be anytime-valid.  
If they are of the all-or-nothing kind, but reanalyzed in a 
meta-analysis, they are gambling while broke. (This intuition  
can be made mathematically precise; see the description of  
Neyman-Pearson testing in terms of betting Shafer (2021) and  
Grünwald et al. (2019).) Yet if we add new studies to an  
ALL-IN meta-analysis, we are reinvesting the betting score 
that we saved from earlier studies, to evaluate whether the strat-
egy in those earlier studies continues to succeed. Just like when 
reinvesting your profits in a casino from one slot machine into  
another, the notion of winning stays the same. Our evidence 
against the hypothesis of a fair casino does not change when 
we alternate slot machines. It does not change if we use the 
score so far to decide on alternating them or to decide when 
to cash out. If the slot machines are fair, any strategy of play-
ing them is not expected to make money, and our notion of  
type-I error control holds under any dependency on past  
results (stopping rules or accumulation bias processes).

Other communication Those uncomfortable with the language 
of betting can also easily resort to any of three more familiar  
notions of statistical communication. Firstly, the likelihood  
ratios/betting scores and their generalizations, so-called e-values  
(Grünwald et al., 2019; Vovk & Wang, 2021), can be inter-
preted as conservative p-values by taking their inverse. If we 
denote any betting score or e-value by €(e.g. € = €1.84 for 
the CureVac trial data), then p < 1/€ is a conservative p-value  
(e.g. p = 1/1.84 = 0.54 for the CureVac trial data). If we com-
municate the p-value p = 1/€ anyone can test by comparing  
p < α but with the addition that this conservative p-value is  
anytime valid2 and so p < α can never spend all α (it is never 
an all-or-nothing test). Secondly, the likelihood ratios have  

their own notion of evidence in the likelihood paradigm  
(Royall, 1997). Just as well as stating that the Pfizer/BioNTech  
trial (Polack et al., 2020) multiplied €1 to almost €118 mil-
lion and the CureVac AG (2021) trial multiplied €1 to €1.84, 
we can state that their data was almost 118 million times and  
1.84 times more likely if we assume the FDA’s goal of 50%  
VE in comparison to assuming only 30% VE. For Pfizer, that 
sounds very good, for CureVac, not so much, and so these 
numbers have an interpretation of their own without impos-
ing any α level. Thirdly, likelihood ratios can be accepted by 
the Bayesian paradigm, as Bayes factors, and possibly com-
bined with prior odds. Grünwald et al. (2019) and Grünwald  
(2021) show that betting scores/e-values and Bayes factors 
are closely related, although not all Bayes factors are betting  
scores/e-values. The bottom-line for communication purposes 
is that the reporting by ALL-IN meta-analysis can be interpreted 
in many ways—p-values, likelihood ratios, Bayes factors—but  
regardless of the interpretation provide fully frequentist type-I  
error control for tests and coverage for confidence sequences.

The remainder of this paper discusses the four categories of 
advantages in more detail: Statistics in Section 1, Efficiency in  
Section 2, Collaboration in Section 3 and Communication in  
Section 4. We use the Covid-19 vaccine trials as running exam-
ples, based on the FDA game described already, but also 
in terms of the safe/e-value logrank test (Ter Schure et al.,  
2020b). We also briefly discuss an actual ALL-IN meta-analysis  
in Section 3.1, that used this safe/e-value logrank test to study 
whether the Bacillus Calmette–Guérin (BCG) vaccine, originally  
developed to protect against tuberculosis and named after its 
inventors, could protect against Covid-19 (Van Werkhoven  
et al., 2021, ALL-IN-META-BCG-CORONA). In the concluding  
section we will provide some broader context, with an over-
view of all the methods already developed—e-values, safe 
tests (Grünwald et al., 2019) and anytime-valid confidence  
sequences— methods already available in software—notably  
safestats R package (Turner et al., 2022)—and future work.  
R code for all calculations, simulations and plots is available in  
the software availability statement (Ter Schure, 2021, https://doi.
org/10.17605/OSF.IO/U6WTP). 

1 Statistics
The language of betting comes with the intuition that win-
ning a large betting score has a small probability if the null 
hypothesis is generating our observations (e.g. the roulette 
wheel is fair). We will make this intuition precise and show 
how to control the type-I error by bounding this probability by  
Markov’s inequality and Ville’s inequality. Crucial here is that 
the betting score underlying our test is an e-value. The language  
of betting also comes with the intuition that when playing  
a game that is favorable to us in principle, we can use  
strategies of different quality: even among all strategies under 
which we expect to get richer, some of them can be expected 
to earn us much more than others. We will relate the more well 
known notion of power to such a different notion of optimality.  
In the following we discuss both e-values and optimality  
first for a single trial (in the FDA game and more generally)  
and then for ALL-IN meta-analysis. We conclude by a  
generalization of optimal e-value tests to confidence sequences.

2Such conservative p-values cannot be pictured as the tails of a sampling dis-
tribution since such a picture needs a sample size. The Introduction chap-
ter and the appendix to Chapter 1 in the Ph.D. dissertation Ter Schure (2022)  
give more details.
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1.1 Under the null: e-values in a single trial
To make the FDA game fair we imposed a multiplication by  
2.4 (or 170/70) if we observe the event in the vaccine group 
and 1.7 (or 170/100) if we observe it in the placebo group. This  
multiplication has expectation 1 (or smaller) if we assume the 
null hypothesis of a vaccine with negligible VE of 30% (or 
smaller). In case of 30%, we have probability 0.41 (or 70/170)  
to observe a vaccine event and probability 0.59 (or 100/170)  
to observe placebo, so in expectation we multiply our invest-
ment by: 70/170 · 170/70 +100/170 ·170/100 = 1. No matter 
how we invest in the two outcomes, (e.g. putting 1/3 on vaccine  
and 2/3 on placebo, or something different) in expectation  
under the null we multiply the initial investment by 1. This 
means that our betting score is an e-value, since by definition an  
e-value is the outcome of a nonnegative random variable  
with expectation (at most) 1 under the null hypothesis (Grünwald, 
2021).

Our betting score could also be rewritten as a likelihood ratio, 
so the expectation of the likelihood ratio (𝔏(50% VE | X)/𝔏(30%  
VE | X)) is 1 as well. We hence-forth write the likelihood ratio 
after n rounds of betting (or after observing n events) as LR(n),  
with for the FDA game

                           
1

( ) |( )50% VE
.

( | )30% VE

n
n i

i i

X
X=

= ∏LR
L

L
                          (1)

Using its expectation of 1, Markov’s inequality bounds the  
probability of observing a large multiplication of our investment  
€ (a large likelihood ratio) by α after n = 170 rounds as follows:

30% VE

30% VE

(170)
(170) 1

.1/
1/1/

αα αα

 
   ≤ = =≥ 

E LR
P LR

Figure 1 shows at the right side the histogram of betting scores 
in the FDA game after 170 events when we simulate events 

under the null hypothesis, with probability 0.41 to occur in 
the vaccine group, corresponding to 30% VE. A line is shown  
at 40, and indeed no more than α = 1/40 = 2.5% of the scores 
seem to be larger than that threshold. In fact, in these 1000 runs 
of simulation only 0.3% of the runs have a betting score larger 
than 40; Markov’s inequality is a loose bound. We also have 
a stronger result because we obtained our betting score over 
events by multiplying the score of the rounds (see (1), corre-
sponding to reinvesting our winnings), called Ville’s inequality.  
We get the following from Ville (1939):

30% VE
( ) .for some1/n n αα  ≤≥ P LR

Ville’s inequality is also illustrated in Figure 1: if we take the 
sequence of rounds into account, still only a few out of the 
1000 simulations ever reach a betting score larger than 40.  
In fact, in these 1000 runs of simulation only 1.1% of the runs 
have a betting score that is larger at any round in the game, 
such that our type-I error is controlled at α = 2.5% at any time.  
Moreover, this type-I error control is not tied to this maximum 
number of 170 events, but continues to hold with an unlim-
ited horizon. Making a large profit in such a fair game casts 
doubt on the null hypothesis and is captured by a likelihood 
ratio that grows away from 1: a large betting profit is obtained  
if the null likelihood is performing worse than alternative.

When trials can be summarized as bets Before they can be 
combined in a meta-analysis, individual trials are often char-
acterized by the summary statistics from trial publications.  
Conventional meta-analysis combines these statistics (e.g. mean  
differences and standard deviations) in a Z-statistic (Borenstein  
et al., 2009). Unlike the vaccine/placebo outcomes that we 
have seen so far, such a Z-statistic has a continuous density and  
cannot be summarized by separately dealing with all possible  

Figure 1. 1000 simulated betting scores in the FDA game over betting rounds n assuming a probability of 0.41 (70/170) for 
each event to occur in the vaccine group (the null hypothesis of 30% VE). The dashed line is the threshold 1/α = 40 one-sided. The 
histogram at the right shows the betting score/LR(170) after 170 events. Note that the expectation of 1 of the scores is not the mode of its 
distribution nor its median and that the y-axis is on a log scale.
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outcomes. Fortunately, Shafer (2021) shows that any likelihood  
ratio of distributions can be viewed as a betting score in a 
game with initial investment €1. This is possible because  
likelihood ratios have expectation 1 in general if we assume 
the null hypothesis in the denominator of the ratio. For a  
Z-statistic we have two normal distributions with variance 1, one 
with mean µ

0
 under the null hypothesis, and one with µ

1
 under 

the alternative. If the data is generated by the null model, the  
expectation of the likelihood ratio is

    
0

11

0 1
00

~

( )( )
( ) ( )d d 1,

( ) ( )Z z z

zZ
z z z z

Z zµ

µµ
µ µφ

µµ

φφ
φ φ

φφ

 
  = = =
 
 

∫ ∫E     (2)

since ϕ
µ1

(z) is a probability density that integrates to 1. This 
means that any such likelihood ratio for a Z-statistic is an  
e-value and can be used to construct tests by betting.

Not all summary statistics can be assumed to form a Z-statistic  
with a normal distribution. Fortunately for the logrank statistic  
this is reasonable (Ter Schure et al., 2020b) if studies are 
large and the effect size not too extreme (hazard ratios not too  
far away from 1). We will use the logrank Z-statistic as a  
running example for meta-analysis on summary statistics. For 
an IPD meta-analysis (on individual patient data), however, we 
recommend to use the exact safe/e-value logrank test from Ter  
Schure et al. (2020b) that is valid regardless of the randomi-
zation (e.g. 1:1 balanced or 1:2 unbalanced), the number of 
participants at risk, the number of events or the size of the  
effect—so also for a hazard ratio 0.05 that corresponds to a VE  
of 95%.

1.2 Under the null: e-values in a (live) meta-analysis
Assume we want to perform a meta-analysis and we collect a  
Z-statistic Z

i
 from each trial i, e.g. a logrank statistic. Before 

observing Z
i
 we construct an honest bet LR

i
 = ϕ

µ1
(Z

i
)/ϕ

µ0
(Z

i
)  

for each trial that is an e-value and thus has type-I error  
control under the null hypothesis ϕ

µ0
—for a default logrank  

statistic this is always µ
0
 = 0 corresponding to hazard ratio of 1.  

If we think of the betting score from the first study and invest 
it in the second study, we are in fact multiplying likelihood 
ratios. We need to have a notion of time t, such that at each time 
we know the number of studies k〈t〉 so far and the number of  
observations n

i
〈t〉 in each study i. If we assume that all stud-

ies are completed at time t with n
1
, n

2
,...,n

i
 events summarized 

by logrank Z-statistics 1 2
1 2

( )( ) ( ), , , knn n
kz z z…  we can construct our  

ALL-IN bet as follows:

                  1
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( )

i
ii

i

nk t k t n int
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The global null hypothesis Each trial bet is testing the same 
null hypothesis µ

0
 = 0 in (3), such that the ALL-IN meta-analysis  

bet tests a global null hypothesis of no effect (0% VE) in all  
trials. Such a global null hypothesis can be rejected with a con-
tribution from each trial, but also in case only one trial observes 
a large score betting against the hypothesis and no other trial  

observes a very small betting score that loses those winnings 
again. After all, the null in each trial is rejected as soon as  
the null is rejected in one of the trials.

Meta-analysis on interim data We can generalize this  
ALL-IN meta-analysis bet of completed trials to bets on 
interim data by assuming that we only have an interim logrank  
Z-statistic z

1
〈t〉,z

2
〈t〉,..., z

k
〈t〉 for the n

1
〈t〉, n

2
〈t〉,..., n

k
〈t〉 events 

observed so far at time t; k〈t〉 still represents the number of 
studies so far at time t, but now these studies are not (all)  
completed. We construct our ALL-IN bet in a similar way:

               1
META

1 1 0

( ) ( )
.

( )
ii

k t k t nn t itt
i

i i i

z t

z t
µφ

φ

〈 〉 〈 〉
〈 〉 〈 〉〈 〉

= =

〈 〉
= =

〈 〉∏ ∏LR LR               (4)

From the perspective of Ville’s inequality, the analysis on  
completed trials and the one on interim data are indistinguish-
able. The only thing that matters is that we include all the  
data we have so far at time t, such that we have type-I error control

                     0 META 1/ for some ,t tα α〈 〉 ≥ ≤ P LR                     (5)

for the global null hypothesis probability P
0
 with an unlimited  

horizon over time t.

1.3 Under the alternative: optimality in a single trial
A power analysis sets a very specific goal for a trial, usually  
to detect an effect of minimal clinical relevance. This is the 
effect we would not like to miss if it were there, although we 
hope that the real effect is larger. We nevertheless use this  
smallest effect of interest to decide on the sample size of the 
trial, otherwise we risk a futile trial. The FDA was clear on 
what this minimal effect should be for the Covid-19 vaccine 
trials: a VE of 50% (FDA, 2020). This is the effect we used  
to bet in the FDA game.

Our strategy in the FDA game, however, was not trying to 
achieve optimal power. If we compare the all-or-nothing confi-
dence interval for CureVac AG (2021) from the introduction—the  
final analysis on 83+145 events—we notice that this confi-
dence interval [25.3%, 57.1% VE] is smaller than the final 
anytime valid interval we show in Figure 3 in Section 1.5, 
which is [20.2%, 60.3% VE]. Note that we are comparing a  
Zα/2

-confidence interval for α/2 = 0.02281 with α/2 = 0.05, so  
the wider interval cannot be attributed to the level of α. The  
difference is that the former one is optimized to have spent 
all α at the final analysis, while the latter one is optimized to 
continue data collection. Power is the probability of finding  
the desired result using the specified analysis at a sample size or 
stopping rule. So for an analysis that is intended to have unlim-
ited horizon, power is not a well-defined concept. Instead  
Grünwald et al. (2019) introduced the concept of growth-rate  
optimality in the worst case, or GROW. Here, the goal is to  
optimize the expected rate at which the evidence grows (or the  
interval shrinks) for each new data point, not at a specific  
sample size. The worst case here is the 50% VE for a one-sided 
alternative hypothesis H

1
 = {P

VE
 : 50% ≤ VE ≤ 100%}. We  
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optimized the FDA bet in the introduction by putting this 50% 
VE in the alternative likelihood. This can be rewritten in terms  
of a likelihood ratio for the logrank statistic Z as follows:

      

0

min

1
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      (6)

with µ
min

 = log(0.5)/4 and µ
0
 = log(0.7)/4 with 0.5 and 0.7 the 

hazard ratios corresponding to VE of 50% and 30% respectively 
(see Ter Schure et al. (2020b)). So our one-sided alternative 
hypothesis for the logrank Z-statistic is a Z-distribution with a  
mean representing an effect that is at least µ

min
:

11 1 min{ : }H µφ µ µ= ≤

(since positive VE corresponds to a negative µ
1
). Our choice of 

the parameter of the alternative likelihood µ
min

 follows directly 
from the minimal effect set by the FDA. Kelly (1956) already 
showed that this way of betting optimizes the way our betting 
score grows if the true VE is 50% (our worst-case scenario).  
Breiman (1961) showed that this approach also minimizes 
the number of events we need to reach a given betting score 
set in advance (e.g. €1/α), for which some intuition is given 
in Figure 2. Grünwald et al. (2019), Shafer (2021) and the  
appendix to Ter Schure et al. (2020b) give various other reasons  

why this is the best way to bet, relating it to data compres-
sion, information theory, Neyman-Pearson testing, Gibb’s  
inequality, and Wald’s identity. The most crucial property for  
the purposes of ALL-IN meta-analysis is that the alternative  
likelihood puts some money on each possible outcome, such 
that no matter what outcome we observe, we keep some of 
the money we risk. This contrasts the approach with a classic  
p < α test that essentially puts all money on the rejection region, 
such that if the outcome is not in it, we we lose all and cannot 
continue betting. A thorough interpretation of Neyman-Pearson  
testing and p-values in terms of betting is given by both  
Grünwald et al. (2019) and Shafer (2021).

1.4 Under the alternative: optimality in a meta-analysis
ALL-IN meta-analysis allows for a retrospective meta-analysis  
that is bottom-up. The betting score that we accumulate by 
reinvesting from one trial into the other (which is multiplying  
betting scores) has an interpretation without enforcing a  
common design or stopping rule on all included trials. This is 
especially important if trials have their own stopping rules, or  
if meta-accumulation processes are at play that influence the 
existence of trials based on earlier (trial) results in the same  
meta-analysis. While a meta-analysis can be bottom-up and 
each have its own design and effect of minimal interest, it can 
be advisable to agree on a µ

min
 for the meta-analysis. However, 

the meta-analysis betting score can also allow each trial i to 
have its own alternative likelihood with parameter µ

min(i)
. Then 

the following multiplication of those betting scores is still a  
valid meta score with type-I guarantees:

                         min ( )
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As long as ϕ
µmin(i) in

 is a probability density that integrates to 
1, we have that each likelihood ratio integrates to 1 under 
the global null hypothesis, such that (5) holds. This means  
that trials can also learn their parameter µ

min(i)
 from already  

completed trials. This is sometimes the case if trials are not  
powered to detect an effect of minimal interest, but an effect 
that is plausibly true based on earlier research. Kulinskaya et al.  
(2016) shows that such use of existing studies to power new 
trials can actually bias conventional meta-analysis since it 
introduces yet another dependency between sample size and  
results that is unaccounted for in any analysis that assumes a 
fixed sample size. For ALL-IN meta-analysis this is no prob-
lem at all, and trials can learn from each other as long as the  
parameter µ

min(i)
 is fixed before seeing new data that is evalu-

ated using that parameter in (7). In Ter Schure et al. (2020b) we 
discuss the advantages of even learning the parameter within 
one trial using prequential plugins or Bayesian posteriors. In a 
game like the FDA game with a clear goal, this is inferior to the  
GROW approach, but in other situations it could be preferred. 

1.5 Confidence sequences
The CureVac AG (2021) trial reached their final interim analy-
sis but was not able to reject the null hypothesis of 30%VE. 
The trial had been too optimistic and powered for 60% instead 
of 50% VE (CureVac AG, 2020). If a trial is underpowered  
but still has a large number of participants in follow-up, there 

Figure 2. Nα is the expected number of events needed to reach 
a betting score of 1/α = 40 for α = 0.025 if we bet according to 
VE1 indicated by the three different lines, with bets each of 

the form 
1

1

|( )VE
.

|( )30%VE

N i
i

i

X
X=∏ L

L  
The number of events we need decreases if the true VE underlying 
the data increases (the true difference in risk between vaccine and 
control is larger). The smallest number of events for a true VE of 
40% is reached by betting VE1 of 40% (blue solid line), the smallest 
number of events for a true vaccine efficacy (VE) of 50% by betting 
VE1 of 50% (orange dotted line) and the smallest number for true 
VE of 60% by betting VE1 of 60% (grey dashed line). Note that for the 
alternative in the FDA game H1 = {PVE : 50% ≤ VE ≤ 100%} we are only 
interested in playing the game well if the true VE is 50% or larger. 
Since for larger true VE, taking VE1 = 50% performs quite well, our 
strategy is to optimize for the worst case of 50% VE itself and use 
the bet with VE1 = 50% in the FDA game.
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is good reason to continue the trial, or combine the trial with 
results from a new trial in a meta-analysis. However, with a  
total of 227 events this trial was not underpowered to reject 
the null hypothesis with an effect in the same ballpark as the  
Pfizer/BioNTech trial that reported 95% VE. In such a case it 
is very interesting to zoom in on the estimate for the effect,  
instead of its test.

A standard confidence interval can be seen as an inversion  
of a hypothesis test: if the null falls outside a two-sided  
90%-confidence interval it can be rejected with a one-sided  
type-I error level of α/2 = 0.05. In general, the interval excludes 
all the values for the parameter that can be rejected. Similarly, 
in our context, an anytime-valid confidence interval excludes 
all values of the parameter that can be rejected by the e-value  
test that corresponds to the betting strategy at hand. So the 
interval is essentially tracking a whole range of bets, each 
against a different null hypothesis. Figure 3 gives a sequence of  
anytime-valid confidence intervals for a random ordering of the  
CureVac AG (2021) data, one for each new observed event or 
betting round. It shows that the more events we observe, the 
more parameters (hazard ratios, or their corresponding VEs)  
we can exclude from the interval. Because these intervals are 
valid at any time, once we can exclude a value, we never have 
to include it again. So we also show a sequence of intervals that 
is the running intersection of all the previous intervals. This of  
course crucially depends on the ordering, so the one shown 
for the CureVac AG (2021) data is just an example, since the 
ordering is not real. Since these intervals are anytime valid, 
it is possible to further shrink the intervals by continuing  
follow-up and observing more events. The coverage of an  
anytime-valid confidence sequence—like an e-value test—has an  
unlimited horizon.

An ALL-IN meta-analysis confidence interval that is based 
on a running intersection is of course only possible in an IPD  
meta-analysis, and cannot be based on summary statistics. The 
confidence interval shown in Figure 3 is based on the logrank  
Z-statistic (by repeatedly calculating it after each event), which 
can also be a summary statistic to achieve a single interval that 

is anytime-valid. The interval follows from the likelihood ratio 
of normal densities from (6) and follows a general recipe for 
constructing confidence sequences from Howard et al. (2021)  
where the hazard ratio is obtained by means of the Peto esti-
mator (Peto, 1987). The same approach can be used to obtain 
an ALL-IN meta-analysis confidence interval. A fixed-effects  
meta-analysis Z-statistic corresponds to a logrank statistic 
stratified by trial, and an estimate can be obtained from such 
a logrank statistic that Peto (1987) calls a typical hazard ratio.  
We discuss this approach a bit further in the final section.

2 Efficiency
Trials often suffer from recruitment difficulties, with estimates 
of 35% (between 1994 and 2002) and 56% (between 2004 and 
2016) not reaching the goal set in advance (McDonald et al.,  
2006; Walters et al., 2017). These trials find themselves under-
powered according to their own protocol: when they decide 
the stop the recruitment and obtain the final sample size for 
analysis, they have a high probability for their test statistic to  
fall outside the rejection region they set in advance. This is 
exactly the scenario where meta-analysis could rescue the line of 
research by combining multiple underpowered trials. However,  
the literature on research waste (Chalmers & Glasziou, 2009)  
and Evidence-Based Research (Lund et al., 2016) shows that we  
are not using the existing evidence base well to design the 
new trials needed for conclusion or to interpret new research.  
ALL-IN meta-analysis makes this very easy to do. It comes 
with a simple notion of the evidence already collected and 
what is still needed, and a notion of a new trial’s ability to pro-
vide that: the implied target. The combination of the two 
has the capacity to make study design more honest, showing  
what a trial can add to the existing evidence base instead of 
just evaluating a misguided goal to single-handedly answer a  
research question.

2.1 The evidence so far and what is still needed
An ALL-IN meta-analysis can set a prospective goal for con-
clusion, e.g. α = 0.0025 = 0.052 corresponding to the level 
of α required by authorities like the FDA that ask for two  
trials at the α = 0.05 level. Following Ville’s inequality (5) 
we need a betting score of 1/α = €400 if we start with €1 to  
reach a conclusion. Because an ALL-IN meta-analysis combines  
trials by reinvesting or multiplying betting scores, a very  
simple calculation gives the betting score we still need at any 
given point. If an initial trial is able to reach a score of €8,  
any new trial can be designed to multiply that by 50. So on 
its own, starting with €1 instead of €8, it would need a betting  
score of €50 to help the meta-analysis reach €400. We could 
evaluate the sample size of the new trial on its ability to  
reach 50, which for a fixed sample size gives the conditional 
power of the meta-analysis once the new trial is added. How-
ever, if this second trial also foresees recruitment issues, it is 
more difficult to evaluate its planned contribution since it will 
probably not be the final trial in the meta-analysis. For this,  
Shafer (2021) proposed a new notion for the ability of a study, 
not to reach a specific target betting score, but as a continuous  
notion of how profitable it can be: the implied target. 

2.2 The ability of a new trial: the implied target
The likelihood ratio summarizes the data not in just two  
categories—statistical significant or not statistical significant—but  

Figure 3. 90%-confidence sequence for a random ordering of 
the 83 events in the vaccine group and 145 events in placebo 
from the CureVac AG (2021) trial. Note that the y-axis is on the 
log scale.
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captures the evidence so far on its way to a certain threshold. 
Similarly we propose to not evaluate experimental design as  
all-or-nothing, but summarize its ability to build on what is 
already there and facilitate future research. To capture a study’s 
expected contribution to a series of studies, we formulate the 
implied target from Shafer (2021) as the multiplicative amount 
with which the combined evidence is expected to grow if the  
study—designed with a certain µ

min 
and sample size n—is added.  

In general, the implied target E* is defined as:

              ( )( )
min

( ) ( )*
~

exp log ( ) .nZ n

n nE Z
µφ

 
  =   

 
E LR              (8)

The logarithm appears in equation (8) because the distribution  
of a likelihood ratio based on n events is very non-symmetric  
and heavy tailed, with extremely large likelihood ratios occur-
ring with not so small probability (see Figure 4). So the  
expectation of the likelihood ratio is drawn very far from its 
typical values by these large likelihood ratios and is not a good  
expression of what to expect. The logarithm makes the distribu-
tion more symmetric (asymptotically (for large n) and for normal  
likelihood ratios even normally distributed), such that the  
expectation is a more meaningful summary of the evidence 

promised by the study. By exponentiation (exp()) we bring 
this expectation back to the scale of the likelihood ratio,  
such that it can be interpreted as a betting score or e-value.

In the FDA game the expected growth rate per new event in 
the CureVac trial, assuming their effect of minimal interest  
of 60% VE, is the following:

60% VE

|( )50% VE
exp log

( | )30% VE

50/150 100 100/15040exp log log
140 70/170 140 100/170

1.029454.

X
X

   
       

    = ⋅ + ⋅        
=

E
L

L

The cumulative contribution of each new event is shown as 
the linear line on the log scale in Figure 5. The CureVac AG  
(2020, Table 8) design planned a final analysis at n = 160 events, 
so their implied target was 1.029454160 ≈ 104. In comparison  
to the target score of €104 at 160 events, the actual betting 
score €1.84 after 83 + 145 = 228 events in the press release is 
quite disappointing. Shafer (2021) gives more examples of how  
betting scores and implied target help to interpret study results  
in the context of study design. 

Figure 4. (and Figure 5) 1000 simulated sequences of betting scores by round in the FDA game after 160 events assuming a 
probability of 0.29 (40/140) for each event to occur in the vaccine group. This is the alternative hypothesis of 60% vaccine efficacy (VE) 
used to power the CureVac AG (2020) trial at a number of events of 160. The dashed line is the threshold 1/α = 40 one-sided and the solid 
line is the implied target of €104. Note that the x-axis is on a log scale. 

Figure 5. (See above at Figure 4.) The histogram for the final betting scores at the right shows the larger scores above and the smaller 
ones at the bottom, which means that if we turn it, it is the mirror image of the histogram in Figure 4. The dashed line is the threshold 1/α = 
40 one-sided. The increase in the solid line per additional event/betting round shows the contribution to the implied target of each event, up 
until the implied target at n = 160 of 104. In this figure, the design has an approximate 79% power to observe a betting score/e-value larger 
than 1/α = 40 before 160 events and 72% power at exactly 160 events (better visible in Figure 4). Note that the y-axis is on a log scale. 
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2.3 Honest study design
An implied target does require an honest proposal of the effect 
of minimal clinical interest µ

min
, to evaluate the merits of the 

study. In regular power analysis, this parameter might be  
tweaked—e.g. setting an unrealistically large effect—to still 
argue for the study’s advancement with only small sample size. 
Or the smallest effect size of interest analysis is set after data  
is observed (Wang et al., 2018). This behavior is incentivized  
by the all-or-nothing character of Neyman-Pearson tests that 
also make the power analysis all-or-nothing. If your desired  
sample size does not meet the power hoped-for, you need to 
either increase it or abandon the study. This aspect of tradi-
tional analyses fully ignores the ideal of cumulative science in  
which one study is not expected to single-handedly answer a 
research question and small increments in knowledge are valu-
able, as long as they build towards a common goal. If they 
use e-values and the ALL-IN framework, researchers do not 
have to view their analysis as the final one, which helps them  
to evaluate their study more honestly (Lakens, 2021).

3. Collaboration
The Evidence-Based Research Network (Lund et al., 2016) aims 
to always inform new research by past results and to reduce 
research waste by separating research ideas that are necessary 
from those that are wasteful. This is not easy to do, however.  
Different communities might have different notions of neces-
sity or even of what is ethical (a state of so-called clinical  
equipoise (Shamy et al., 2020)). It might therefore be very  
beneficial to have all those running new clinical trials in a field  
collaborate together in an ALL-IN meta-analysis.

3.1 ALL-IN-META-BCG-CORONA
We ran two ALL-IN meta-analyses during the Covid-19  
pandemic with the involvement of seven trials in one and four in 
the other. All were designed to study whether the BCG vaccine,  
originally developed to protect against tuberculosis, could pro-
tect against Covid-19 (based on a theory of non-specific immune 
effects and innate immunity (Netea et al., 2020)). The two  
meta-analyses study different populations (healthcare workers  
and the elderly) and two questions each: the effect of the BCG  
vaccine on Covid-19 infection (not necessarily sympto-
matic) and the effect on severe Covid-19 (indicated by  
hospitalizations). In the following description we will focus on 
the analysis of Covid-19 infections in the healthcare workers  
population.

ALL-IN-META-BCG-CORONA followed many of the steps 
also outlined by Tierney et al. (2021), that we will briefly dis-
cuss here: (1) Meta-analysis design, (2) Systematic search for 
trials, (3) Systematic review for trial inclusion (4) Data upload,  
and (5) Disseminating results.

(1) Meta-analysis design Early in the project we decided to 
aim for an IPD meta-analysis on interim data and wrote our 
protocols and statistical analysis plans. This timestamped two 
important decisions on the meta-analysis design: the haz-
ard ratio of minimal interest of 0.8 (20% VE) for events of  
Covid-19 and the level of α set at 0.0025 so the threshold for 

the e-value was at 1/α = 400. For these decisions we set up a  
meta-analysis Steering Committee that was still fully blinded 
to any results at the time. The design was preregistered (Van  
Werkhoven et al., 2021) and all documentation and a webi-
nar explaining the methodology were made available on a  
project website (Ter Schure et al., 2020a).

(2) Systematic search for trials We continuously searched  
for trials to include in the meta-analysis. Some were already 
known to our Steering committee before we started. They initi-
ated a BCG trial of their own very early in the pandemic and 
shared their protocol with many of their contacts in the BCG  
research community. Other trials were found by a repeated 
systematic search of trial registries. The trials that agreed to  
join the meta-analysis were each represented by a member 
in the Advisory Committee. Meetings of the Advisory com-
mittee were scheduled regularly and the trials involved could 
point us to any new developments. A major advantage of  
ALL-IN meta-analysis here is that the number of trials does  
not need to be specified in advance.

(3) Systematic review for trial inclusion We received exter-
nal advice from Cochrane Netherlands on trial inclusion 
based on a thorough risk-of-bias assessment. For this assess-
ment, each trial shared their protocols, and subsequently all  
Cochrane’s evaluations were shared and discussed with the 
Steering committee and Advisory committee (where trials  
were usually represented by their PI’s who were blinded to 
any trial results). Trials had multiple opportunities to answer  
questions—from Cochrane Netherlands as well as other tri-
als involved—explain their trial and express other concerns 
about differences between the trials included. The Steering 
Committee made the final decision on including a trial, before 
any of that trial’s results were known to anyone part of the  
discussion. The decision of the Steering committee explicitly  
incorporated both trial quality and meta-analysis homogeneity.

(4) Data upload Parallel to the discussions on trial inclusion,  
data transfer agreements were signed and data was shared  
through a secure upload. Each trial had a data uploader that 
was in close contact with the ALL-IN metatrial statistician 
(the first author of this paper) about data quality. The ALL-IN  
statistician did not attend the discussion meetings and kept the  
Steering committee and Advisory committee blinded to any  
results before each trial inclusion decision.

(5) Disseminating results Each data-uploader received a dash-
board account with permissions to inspect the meta-analysis  
e-value and their own trial contribution. Their access of interim 
meta-analysis results in the dashboard served as a motivator  
to keep their own trial data upload up-to-date and to check  
the sequence of e-values for errors. Figure 6 shows this dash-
board based on a demo login with synthetic data (this demo 
was available for everyone involved to get an impression).  
After an initial period where the data-uploaders could only 
inspect their own trial results, they granted each other per-
mission to inspect all the individual trial contributions. When 
the first trials were completed and the meta-analysis was  
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approaching its conclusion, the results were also presented to the  
Advisory and Steering committees. Any interim decisions were 
planned based on the ALL-IN meta-analysis e-values, but results 
were also presented in the context of power, implied target  
per trial and confidence sequences. 

3.2 Collaborative and bottom-up meta-analysis
In many aspects, our approach agrees with the framework for  
prospective, adaptive meta-analysis (FAME) proposal from  
Tierney et al. (2021). FAME argues for prospective meta-analyses  
in close collaboration with ongoing trials to achieve the same 
advantages outlined in this paper, such as aligning trial charac-
teristics (“minimize heterogeneity”) and reducing publication  
bias and “bias [in] both review and meta-analysis methods”  
introduced by “prior knowledge of trial results” (e.g. accumulation  
bias (Ter Schure & Grünwald, 2019)). In alignment with  
the FAME recommendations, ALL-IN-META-BCG-CORONA  
was prospectively designed by preregistering an overall effect 
size of minimal interest and an α-level. However, ALL-IN  
meta-analysis in general also allows for a more bottom-up 
approach when each trial’s e-value is based on that trial’s own 
design (effect size of minimal interest, see Section 1.4) and  
trial evidence is synthesized more loosely without a strict deci-
sion rule. In comparison to FAME, ALL-IN meta-analysis 
is much more adaptive. FAME proposes to use conventional  
meta-analysis (with a fixed sample size) and optimize the tim-
ing of the meta-analysis “to anticipate the earliest opportunity 
for a potentially definitive meta-analysis”. In that sense, FAME  
can only adapt to the speed of recruitment, while ALL-IN allows 

to adapt to any information so far including the evidence in the 
trials and the synthesis of the meta-analysis itself. There is 
also a statistical inconsistency in the FAME approach that is  
concerned with “striking a balance between maximising 
the absolute and relative information size and producing a  
sufficiently timely review” but does explicitly state that the 
last step of the meta-analysis is to “assess the value of updating  
the systematic review and meta-analysis”. A fixed sample-size 
statistical analysis should not be reanalyzed using the same  
statistical methodology. Any proposal to use conventional  
meta-analysis for efficiency purposes risks accumulation bias 
(Ter Schure & Grünwald, 2019) because the timing of the  
meta-analysis might be driven by some of the results 
part of that same analysis. Hence the best approach is to  
combine the recommendations from FAME (Tierney et al., 2021) 
with statistical approach from ALL-IN meta-analysis and the  
spirit of living systematic reviews.

Collaboration using a dashboard A dashboard for ALL-IN  
meta-analysis allows us to spot trends in the accumulating  
evidence, or allow other stakeholders to monitor. A dashboard  
like Figure 6 can give access to the accumulating e-values to 
those that need to prepare for crossing a threshold in the near 
future, e.g. for independent data monitoring committees of 
ongoing trials or for those considering new trials or preparing  
to update medical guidelines. On a log-scale, the increase in  
e-values is linear (in expectation) and the observed trends can 
be estimated, e.g. in Figure 6 as an increase in evidence per  
additional calendar day.

Figure 6. Dashboard used to communicate interim results in ALL-IN-META-BCG-CORONA to all data uploaders with a login. The 
involved trials were performed in the Netherlands (NL), Denmark (DK), the United States (US), Hungary (HU), Brazil (BR), France (FR) and 
Guinea-Bissau/Mozambique (AF). The dashboard is in demo mode and shows synthetic (“fake”) data. The option to (de)select trials is for 
plotting purposes of individual trial e-values; all trials in the dashboard stay included in the meta e-value, following the decision from the 
Steering committee on trial inclusion. Note that the y-axis is on the log scale. 

Page 13 of 24

F1000Research 2022, 11:549 Last updated: 14 SEP 2023



For ALL-IN-META-BCG-CORONA, the time unit t in the 
definition of LR〈t〉 from (4) was set to calendar days and the  
e-values were updated at each calendar day with an event. 
The dashboard plots in Figure 6 horizontal lines at 1 for trials  
that do not observe any events yet: they have not started betting  
and are still at their initial investment of €1 contributing a 
neutral amount to the multiplication meta-e-value. ALL-IN  
meta-analysis monitors e-values as events come in, also when 
they do so from multiple trials simultaneously. In the language 
of betting, even the analysis of simultaneous events is consid-
ered a sequential bet. If the bet on the events from one trial  
pays out €4, it multiplies our initial capital by 4, and if the 
events from another trial pay out €5, it does so by a factor 5.  
Yet if we actually consider those trials to be consecutive 
bets, we reinvest the €4 from the first into the second, and 
obtain €1 ⋅ 4 ⋅ 5 = €20, as follows from the definition of the  
meta-analysis e-value on interim data in (4).

Figure 6 illustrates what going ALL-IN means: the evidence 
in all studies can be monitored and compared to the required 
threshold at any time. The hypothesis test is carried out by 
comparing the meta e-value in blue to the threshold 1/α of  
400, plotted as a dotted line. Because the meta-analysis is any-
time and live a conclusion is reached whenever the e-value  
sequence passes that threshold. The synthesis of studies can  
efficiently lead the decision to stop recruiting, treat the placebo  
group or discourage new trials to start, while encouraging  
inspection of each individual trial’s contribution to the  
meta-analysis. Since each trial’s contribution is a simple mul-
tiplication, their components can often be conveniently spotted  
in the agreement of the shape of the meta-analysis and indi-
vidual trial lines in a dashboard like Figure 6 (as long as  
not too many trials are contributing simultaneously).

Collaboration in a competitive field or a pandemic ALL-IN 
meta-analysis also prevents losing type-I error control when  
many trials compete for answers on the same research ques-
tion, e.g. in an uncoordinated scientific response to a pandemic.  
If trials are only evaluated in isolation and a response follows 
the first positive result of a single trial, serious multiple testing 
issues arise that inflate the type-I error and result in unreliable  
inference and, subsequently, poor decisions. This happens  
especially if all trials perform interim analyses on their own, 
and a type-I error occurs at an interim analyses before any 
other trial results are published to refute it. The example  
dashboard also clearly demonstrates decreased type-II errors:  
synthesizing the evidence in a meta-analysis at interim stages  
of the trials, and not after trials are completed, improves the 
ability to find an effect early. Collaboration is indeed much  
more efficient. 

3.3 Fixed-effects and random-effects meta-analysis
Sutton et al. (2007, p. 2491) note that “in a meta-analysis 
with considerable heterogeneity, the impact of a new (large) 
study will be (much) less in a random compared to fixed 
effect model”. This is due the incorporation of a parameter in 
the model that represents the between-study variation. Also  

Kulinskaya & Wood (2014) find that the goal of sequentially 
updating a random-effect meta-analysis might involve planning  
a large number of small trials to estimate the between-study  
variance well. Even if that is considered advisable, a random-
effects model result might still be very difficult to interpret  
(Riley et al., 2011). Hence there are various reasons to prefer  
the fixed-effects model to monitor evidence efficiently and  
to ensure that the trials are sufficiently homogeneous.

Alongside ALL-IN-META-BCG-CORONA we initiated a second  
ALL-IN meta-analysis. While the first included trials on 
healthcare workers, the second included trials in the elderly.  
Early in the process, before seeing any data, our Steering  
committee noticed that the two groups could be very different.  
Based on a theory of innate and trained immunity, they expected 
a different effect of the BCG vaccine on the younger immune 
system of healthcare workers than on the older immune system  
in the elderly. It could even be that the BCG vaccine effect 
was beneficial in the ability to fight off Covid-19 in one popu-
lation but harmful in the other. In general, the differences 
between trials can be in three categories: heterogeneous effects,  
conflicting effect and multiple testing.

Heterogeneous effects Our Steering committee decided that 
to declare success, all included trials in health-care workers  
should observe an effect of 20% VE or larger. If they indeed  
do, heterogeneity in their effect sizes (e.g. one 20%, one 50%, 
one 25%) does not matter for their joint ability to reject the  
global null hypothesis of no effect in all trials. So for test-
ing the global null, trials are allowed to be heterogeneous 
in where they are in the space of the alternative hypothesis  
H

1
 = {VE: 20% ≤ VE ≤ 100%}. For estimation, however, it is 

not clear what the ALL-IN confidence interval is estimating  
if we assume that the effects in the trials are very different. 
Still, as a first summary, a typical effect size (Peto, 1987) might 
be useful if we are unable to estimate a random effects model. 
The development of confidence sequences for random-effects  
meta-analysis is a major goal for future work. We do not,  
however, believe that the evidence in a line of research should 
be monitored based on whether this interval excludes the 
null hypothesis, or whether the e-value corresponding to the  
random-effects null model does: for testing, the global null is 
much more natural. Waiting for a random-effect model to reach 
a certain threshold is counter-intuitive, since it might require 
many small trials to estimate the between-trial variability instead 
of focusing on testing the treatment effect. Moreover, the goal 
of rejecting the null hypothesis corresponding to this model can 
be quite strange. When testing a zero-effect null hypothesis, 
it assumes that there are true effects of harm and true effects of  
benefit among the trials and that their mean is exactly zero.

Conflicting effects If one of the trials has an effect smaller 
than 20% or even a harmful effect, we should anticipate betting 
scores or e-values that are smaller than 1. So a meta-analysis  
multiplication of those e-values would reduce the evidence  
available from other trials. If we can identify groups for 
which we expect that the trials in each group have an effect 
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in the same direction and of at least the minimal size, we can  
perform separate meta-analyses. This was the rationale behind 
grouping healthcare workers and the elderly each in their own  
ALL-IN-META-BCG-CORONA analysis.

Multiple testing When our analysis is exploratory, and we 
really have no idea how to group the various trials, we are faced 
with a multiple testing problem. Note that in this situation also 
no conventional meta-analysis method would be used to test 
a common null-hypothesis. We wonder whether any of the  
trials has the ability to reject the null hypothesis. In that case, 
we can divide our initial investment over the trials, and see if 
the totality of their bet achieves a high betting score. Research 
into this use of e-values has shown that indeed averaging  
e-values is the optimal way to have type-I error control in a  
standard multiple testing setting (Vovk & Wang, 2021). We return  
to the notion of hedging bets and averaging e-values in Section 4.

Problems with heterogeneity in meta-analysis are not tied to 
the ALL-IN approach and familiar to anyone working with  
meta-analysis methods. ALL-IN-META-BCG-CORONA had 
the advantage that many of the trials that started later had 
drawn inspiration from the protocol of the first trial. The same 
sort of alignment of inclusion criteria and outcome definitions  
might be achieved in other lines of research as well. Hence 
close collaboration can be very important and the promise of 
an early conclusion of the research effort might keep a research  
field motivated to keep the goals aligned.

4. Communication
We have illustrated that the language of betting can be useful  
in interpreting results from an ALL-IN meta-analysis. Here 
we argue this further by giving extensions of our method that  
are very easily explained in terms of betting.

4.1 The language of betting for two-sided tests
Our examples so far covered one-sided tests, but those can be  
easily extended to two-sided tests, e.g. by taking

( )

00

min (left) min( )right

( ) ( ) ( )
two-sided left right

( ) ( )
( ) ( )
left right( ) ( )

1 ,
2

with

( ) ( )
and ,

( ) ( )

n n n

n n
n nn n
n n

z z

z z

µ µ

µµ

φ φ

φ φ

= ⋅ +

= =

LR LR LR

LR LR

to represent a two-sided alternative hypothesis

{ }1 1 11 min( ) min(right)left: or .H µφ µ µ µ µ≤ ≥=

Such a two-sided test is easy to interpret in the language of  
betting. We essentially split our initial investment (e.g. €1) 
between the two sides of the alternative hypothesis (e.g. by bet-
ting €0.50 on one side and €0.50 on the other). Any other 
weighting of the two sides is also possible and corresponds to a 
different division of the initial investment. The crucial thing is 

that each side tests the same null hypothesis H
0 

= {ϕ
µ0

} and has 
expectation 1 under the null hypothesis, such that any weighted 
average also has expectation 1 and is an e-value. Note that  
for a meta-analysis at time t with k〈t〉 studies this becomes:
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Usually one side of the bet is losing and the other is winning  
such that we do not want to reinvest (multiply) across 
sides but keep them separate for all trials. In our  
ALL-IN-META-BCG-CORONA dashboard we also visualized 
these two sides of the meta-analysis test separately; in Figure 6  
we show only the left-sided test (for benefit) of the two.

4.2 The language of betting for co-primary endpoints
Another way to hedge our bets is by considering multiple  
primary outcomes. In ALL-IN-META-BCG-CORONA, for exam-
ple, not only were the Covid-19 events counted, but Covid-19  
hospitalizations as well, as an indicator for severe disease. We 
started with α = 0.05 and put 10% on Covid-19 (α = 0.0025  
on each of the two sides of a two-sided test) and 90% on 
hospitalisations (α = 0.0225 on each of the two sides of a  
two-sided test). So the thresholds to achieve with the e-value  
for Covid-19 was set at 1/α = 400 and the one for hospitaliza-
tion at 1/α = 44.44. A different way to formulate this is that 
each had to achieve 1/α = 20, but that the sequence of e-values  
for Covid-19 started with an initial investment of €0.05 for 
each side of the two-sided test (and had to multiply by 400 to  
reach €20) and that the e-value for hospitalization started 
with an initial investment of €0.45 for each side (and had to  
multiply by 44.44 to reach €20).

There are two ways to consider such a bet on two co-primary 
outcomes: separately and combined. If we evaluate the e-values  
for each primary outcome separately and reach the threshold 
with either of the two, we are rejecting the null for that outcome. 
We are doing two separate tests. If we evaluate the e-values  
combined, we average them weighted by their α, just as for 
the two sides of the two-sided test. In that case we have similar  
type-I error control, but reject the null hypothesis that both 
are a null effects in favor of the alternative hypothesis that  
one of them is not. Yet we cannot conclude which one is  
non-null with the same type-I error since our α level applies to 
the combined bet and the individual components to the averaged  
bet are essentially lost. 

Concluding remarks
The novelty of this paper lies in a new method for  
meta-analysis. We do not claim any novelty for the underlying  
mathematics, though. The basic methods we describe can be 
viewed as relatively minor variations of the anytime-valid  
tests that are designed to preserve type-I error under optional  
stopping, as designed by H. Robbins and his students (Darling  
& Robbins, 1968; Robbins, 1970). Unfortunately and surprisingly,  
these tests have not caught on in statistics until a few years 
ago—right now they are thriving in work on so-called  
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safe tests, anytime-valid confidence sequences and e-values 
e.g. Grünwald et al. (2019); Henzi & Ziegel (2021); Howard &  
Ramdas (2019); Howard et al. (2021); Johari et al. (2021); Pace 
& Salvan (2019); Ramdas et al. (2020); Shafer et al. (2011);  
Shafer (2021); Turner et al. (2021); Vovk & Wang (2021). As 
far as we know, it has never before been suggested to use such 
methods in a meta-analysis context. (Group sequential methods, 
which have originally also been inspired by the anytime-valid 
tests, have in turn spurred developments in meta-analysis, but 
these are substantially different from ALL-IN.) Also, the fact 
that the logrank test can give a likelihood ratio of the type 
needed for an anytime-valid test/an ALL-IN meta-analysis is a  
new finding described by Ter Schure et al. (2020b).

Likelihood ratios, E-variables and e-values
In this paper we presented betting scores/e-values that are 
equivalent to likelihood ratios. In general though, betting scores  
and e-values are really generalizations of likelihood ratios that 
preserve the properties of likelihood ratios that give them a  
prominent role in statistics. Entire books have been written to 
advocate for summarizing evidence in observed data by a like-
lihood ratio (Edwards, 1974; Royall, 1997) and to separate  
the goal of measuring evidence from expressing posterior 
beliefs and making decisions. Likelihood ratios have the prop-
erty that they can “favor a true hypothesis over a false one 
more and more strongly” and while a likelihood ratio can be  
misleading, “strong evidence cannot be misleading very often”  
(Royall, 1997, p. 14). This latter type-I error control is also 
referred to as a universal bound by Royall (1997) and, by  
recognizing Ville’s inequality, can be generalized to other  
betting scores and e-values.

A betting score € is a random outcome of a bet and its random  
variable is an E-variable if it is nonnegative and for all  
P ∈ H

0
, E

P 
[€] ≤ 1. For a given outcome of the bet, the 

value of such a random variable is the e-value. Ville’s  
inequality relies on the multiplication of E-variables—forming  
a test martingale—which also has expectation smaller than 
1 and thus is itself an E-variable. For the example e-values 
in this paper, the requirement on the expectation E

0
[LR] ≤ 1  

holds for a simple null hypothesis, e.g. H
0 
= {ϕ

0
}.

Apart from likelihood ratios of two simple hypotheses,  
e-values can also be defined for more complicated tests—e.g.  
a t-test with a nuisance parameter for the variance—in which 
case the unit expectation needs to hold not for a single  
mean-0-normal distribution with known variance, but for all  
mean-0-distributions with any variance. Grünwald et al. (2019) 
shows that it often is possible to construct E-variables for such 
composite testing problems, which is why we consider the  
e-value the right generalization of the likelihood ratio. 

Anytime-valid confidence sequences
In this paper we briefly presented a confidence sequence  
(in Figure 3) for the hazard ratio or VE that was based on the 
Gaussian approximation to the logrank statistic and the Peto 
(1987) estimator. This estimator can be derived from summary  

statistics and is therefore still quite common in meta-analysis  
as a so-called two-stage method, although it is advised against 
for extreme hazard ratios (Simmonds et al., 2011). Research 
into other confidence sequences for the hazard ratio is still  
ongoing. For other estimation problems, confidence sequences 
already have been thoroughly studied, for example for medi-
ans and other quantiles (Howard & Ramdas, 2019), and odds  
ratios (Turner et al., 2021). These have not, however, been 
extended to meta-analysis, and especially for the random-effects  
meta-analysis model, research into confidence sequences is a 
major goal of future work.

Data availability
No data are associated with this article.

Software availability
The safestats R package (Turner et al., 2022) provides soft-
ware to do an e-value analysis for the t-test, Z-test, logrank test 
and 2x2-tables. Also functions are available to calculate the 
power and implied target for these study designs. Confidence 
sequences can be calculated for the odds ratio in 2x2-tables  
and the hazard ratio in time-to-event data.

R code for the calculations, simulations and plots in this paper 
can be found on the Open Science Framework (Ter Schure,  
2021, https://doi.org/10.17605/OSF.IO/U6WTP).

These were produced using the GitHub version of the  
safestats R package accessed 22 September 2021 (Ly et al.,  
2021).

This code is available under the terms of the Creative  
Commons Zero “No rights reserved” data waiver (CC0 1.0  
Public domain dedication). 

The code that produces the dashboard in Figure 6 is not publicly 
available since it mainly deals with logins and permissions that 
concern those involved in the particular ALL-IN meta-analysis  
that is described there as an example.
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Shubhendu Trivedi   
Massachusetts Institute of Technology (MIT), Cambridge, MA, USA 

The paper presents a new method for meta-analysis, motivated partly by (and for "breathing life" 
into) living systematic reviews that are used in the clinical domain which provide 
recommendations to prevent research waste. The authors christen their method to be ALL-IN 
meta-analysis, which is Anytime Live and Learning Interim Meta-Analysis. "Anytime" meaning 
analysis can be updated at any time and can control for type I error irrespective of any other 
decision making along the way. "Live" allows for a bottomup collaboration of different trials; a trial 
can be initiated in any way, and we can include data from the meta-analysis itself. "Interim" 
permits for a combination of data from trials that are still ongoing.  
 
The paper begins with a topical motivation from the covid19 pandemic, while emphasizing that 
the methodology could help better evidence combination, collaboration, and communication 
during later pandemics, or even smaller clinical trials. Using a single trial and specifications issues 
by the FDA for the covid19 vaccine trails (regarding vaccine efficiency and evidence against a null 
hypothesis say 30% VE) , the general betting game that is the language central to much of the 
contribution of the paper is introduced. It is shown that the same can also be written in terms of 
likelihood ratios and examples for scores are calculated for a Pfizer trial and a CuraVac trial.  
 
The betting based methodology allows the statistical analysis to not simply be all or nothing (like p 
testing). In the all or nothing setting, we can not continue from one trial to another without 
violating type I error rates, while in the betting (ALL-IN) setting one can simply update patients 
later on. This also permits for better efficiency (we can understand the number of participants 
needed to answer a research question) and collaboration (since we can combine analysis as data 
becomes available). The language of betting also can be interpreted in various equivalent ways 
(likelihood ratios, conservative p values, e values) that also allow for easy and crisp communication 
about the analysis.  
 
The intuitions of the language of betting are made more precise using standard tools in the 
literature (Markov's inequality, and Ville's inequality). Further, the betting score underlying the test 
is an e-value which further permits statistical analysis (using the tools cited). logrank Z statistics 
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are used as a running example for meta-analysis on the summary statistics -- we can simply collect 
the Z statistics Z_i from each trial, which can easily be combined (as shown in equation 3). Notably 
if we add in interim data, then from the perspective of Ville's inequality, they are indistinguishable 
for testing. The methodology also allows for combining data from trials without requiring a 
common design -- this can easily done by deciding upon a min mu parameter for each trial, using 
which one can still get a valid combination of different trials with valid type I guarantees. Further, 
method not only captures whether an effect is statistically significant or not, it also captures 
evidence up till now. The language of the "implied target" of Shafer is used to make this precise, 
which in turn can also be used to quantify how much will the evidence change if a new study with 
some mu and N is added.  
 
The paper also reports testing the methodology during the covid19 pandemic in two meta-
analysis. One involving 7 trials, and the other involving 4 trials - considering different populations 
(healthcare workers, and the elderly). The trials involved testing if BCG could help with COVID19 
immunity. The results are discussed while discussing issues (and recommendations) for meta-
analysis design, systematic search for trials, systematic reviews for trial inclusion, data upload, and 
disseminating results.  
 
In general, I found the paper very well written. The methodology is described very clearly, along 
with a glimpse of the underlying statistical tools available. The advantages and recommendations 
that the methodology has/implies are also discussed in detail. The underlying mathematics for 
testing is standard, but as far as I understand this is the first application for it in the setting 
considered in the paper. I would recommend the paper for acceptance.
 
Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use 
by others?
Yes

If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
No source data required

Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
Yes
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The work by ter Schure and Grünwald outlines an alternative approach to evidence synthesis, 
aiming to include emerging evidence in real time without increasing type-1 error. The authors 
suggest that their ALL-IN method can “breathe life into living systematic reviews, through better 
and simpler statistics, efficiency, collaboration and communication”. As much as I agree with the 
three final points and fully support this notion, I have some doubts regarding the professed 
‘simplicity’ of the proposed statistical approach, implementation, and generalizability of the 
method. 
 
Firstly, the approach has been developed and tested only in one very unusual setting (Covid-19 
pandemic), in which the accumulation of evidence over a short space of time was extreme and 
sharing of data and collaboration was greater than witnessed in previous years. According to 
Heinze et al. (manuscript in submission) and their proposed framework of four phases of 
methodological research in biostatistics, the ALL-IN method would be classified as a method in a 
second phase of its development. Consequently, it requires further evaluation in a range of 
settings and refinement before it could be considered as a viable alternative to other available 
methods. This should be discussed in their paper, with declarations more balanced to reflect the 
single setting in which their method was applied. 
 
Secondly, contrary to the authors' claim that the introduction of terminology from game theory 
makes it easier to communicate the uncertainties, I am finding the sections using betting 
language difficult to follow. The evidence synthesis community still to some extent grapples with 
more standard methods of advanced evidence synthesis (Wang et al. BMJ 2021; 373: n736).1 Thus, 
the introduction of new concepts (or their reintroduction) should be carefully thought through. 
Overall, I feel the manuscript would benefit from limiting the use of references to betting and 
investments to an essential minimum. 
 
Finally, the authors present a real-life example of their method using BCG vaccines trials for Covid-
19. The presented example resembles an approach more akin to prospective individual participant 
data (IPD) meta-analysis than a living systematic review or also the referenced FAME approach - 
both relying on aggregate rather than individual participant data. The challenges associated with 
accessing IPD, the non-standard approach to data analysis and lack of clear proof of its benefits 
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push this method toward “interesting” developments rather than “a new way forward”. The 
authors should explain more clearly how their method could help aggregate-level evidence 
synthesis or refocus the scope to IPD based projects. Furthermore, it would be interesting to learn 
how the ALL-IN compares to commonly used methods in terms of efficiency and reliability of 
obtained results. 
 
Concluding, the presented method is an interesting approach to evidence synthesis; however, at 
the current stage of its development, it requires further evaluation of its utility for the evidence 
synthesis to be able to bet on it. 
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In this manuscript, ter Schure and Grünwald proposed a new form of meta-analysis, namely ALL-
IN meta-analysis, which can facilitate living systematic reviews. 
 
The authors provided a different understanding of evidence synthesis, and a novel way of 
performing meta-analyses. 
 
The new method is illustrated in the language of betting, which is complement with the acronym 
of ALL-IN. 
 
Major comments:

The calculation of probability of next event in group X (e.g. in page 3, the fraction of 0.41 of 
COVID-19 events to occur in  the vaccine group, 0.41=70/(100+70)), is only valid when the 
number of participants is infinite in each group. 
 
When the number of participants still at risk in one group decreases, the probability of next 
event occurring in this group will also decrease. So the constant probability assumption 
may not be valid in real practice. 
 

1. 

In page 14 and 15, the authors mentioned heterogeneity several times, however, the 
authors avoid giving a direct answer or solution to heterogeneous results from primary 
studies. This should be addressed or at least extensively discussed (as a limitation). 
 

2. 

The COVID-19 vaccine trials are used as an example. However, all these trials are conducted 
recently and in a short time period (compared to other treatment). How is the 
generalizability of this new methods in other treatments? 
 

3. 

The method is easily extended to IPD meta-analysis. How well this method can be extended 
to network meta-analysis of multiple treatments? 
 

4. 

How can covariates, both on study level and individual level, be adjusted in this new 
framework?  

5. 

 
Minor comments:

In Page 7, section 1.1, the equation “70/170*170/70 + 100/170*170/100 = 1”, seems not 
correct, the right side should be 2. But I assume the authors forget adding something in the 
left side of the equation. Please check. 
 

1. 

“Betting on vaccine” in this paper actually means betting on the next event will occur in the 
vaccine group (which means vaccine is not effective). It can be a bit misleading, since in 

2. 
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common sense, reader may think betting on vaccine means betting on vaccine can protect 
participants.
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