
Fast Rates for General Unbounded Loss Functions:
From ERM to Generalized Bayes

Peter D. Grünwald PDG@CWI.NL
Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
Leiden University, Mathematical Institute, Leiden, The Netherlands

Nishant A. Mehta NMEHTA@UVIC.CA

Department of Computer Science, University of Victoria
Victoria, Canada

Abstract
We present new excess risk bounds for general unbounded loss functions including log loss and
squared loss, where the distribution of the losses may be heavy-tailed. The bounds hold for general
estimators, but they are optimized when applied to η-generalized Bayesian, MDL, and empirical
risk minimization estimators. In the case of log loss, the bounds imply convergence rates for
generalized Bayesian inference under misspecification in terms of a generalization of the Hellinger
metric as long as the learning rate η is set correctly. For general loss functions, our bounds rely
on two separate conditions: the v-GRIP (generalized reversed information projection) conditions,
which control the lower tail of the excess loss; and the newly introduced witness condition, which
controls the upper tail. The parameter v in the v-GRIP conditions determines the achievable rate
and is akin to the exponent in the Tsybakov margin condition and the Bernstein condition for
bounded losses, which the v-GRIP conditions generalize; favorable v in combination with small
model complexity leads to Õ(1/n) rates. The witness condition allows us to connect the excess
risk to an “annealed” version thereof, by which we generalize several previous results connecting
Hellinger and Rényi divergence to KL divergence.
Keywords: statistical learning theory, fast rates, PAC-Bayes, misspecification, generalized Bayes.

1. Introduction

Much of statistical learning theory has operated under the restrictive assumption that the loss suf-
fered for any prediction falls into some finite interval, which to say that the losses are bounded. In
addition, much of this theory for deterministic estimators and even more so for randomized estima-
tors only yields “slow” convergence rates of the risk of the predictor to the minimum risk achievable
via the model in use; these are the best rates possible in the face of a worst case distribution. Faster
rates of convergence are often possible under various, practically-applicable conditions on the learn-
ing problem, and showing such improvements is important as they can translate to drastic reductions
on the number of examples needed to achieve a fixed level of error. We provide a novel theory of
excess risk bounds for deterministic and randomized estimators in settings with general unbounded
loss functions which may have heavy-tailed distributions — important applications include regres-
sion in situations with heavy-tailed noise and density estimation with log loss without assuming
boundedness of likelihood ratios. These bounds have implications for two different areas: in sta-
tistical learning, they establish that with unbounded losses, under weak conditions, one can obtain
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estimators with fast convergence rates of their risk — such conditions previously were only well
understood in the bounded case (earlier work on generalization bounds for unbounded loss func-
tions such as (Meir and Zhang, 2003; Cortes et al., 2019) typically needs much stronger conditions
to obtain fast rates). In density estimation under misspecification, the new bounds imply conver-
gence rates for η-generalized Bayesian posteriors, in which the likelihood is raised to a power η not
necessarily equal to 1, under surprisingly weak conditions. Finally, the bounds highlight the close
similarity between PAC-Bayesian and η-generalized Bayesian learning methods under misspecifi-
cation; these methods usually are studied within different communities. We now consider these
applications in turn:

1. Statistical Learning In Statistical Learning Theory (Vapnik, 1995) the goal is to learn an action
or predictor f̂ from some set of actions, or model, F based on i.i.d. data Zn ≡ Z1, Z2, . . . , Zn ∼ P ,
where P is an unknown probability distribution over a sample space Z . One hopes to learn an
f̂ with small risk, i.e., expected loss E[`f̂(Z)], for some given loss function `. Here, E denotes

expectation under P , and f̂ ≡ f̂(Zn) is a function fromZn toF that represents a learning algorithm;
a prototypical example is empirical risk minimization (ERM). Thus, as is common, with some abuse
of notation a learning algorithm is really a function, i.e., we do not insist it to be computable; and,
in statistical contexts, we sometimes refer to learning algorithms as estimators, simply because
this is common usage. A learning problem can thus be summarized as a tuple (P, `,F). Well-
known special cases include classification (with ` the 0-1 loss or some convex surrogate thereof) and
regression (with ` the squared loss). As is customary (see e.g. (Bartlett et al., 2005) and (Mendelson,
2014)), in most of our results we assume existence of an optimal f∗ ∈ F achieving E[`f∗(Z)] =

inff∈F E[`f(Z)], and we define the excess loss of f as Lf = `f − `f∗ .
When the losses are almost surely bounded under P , there exists a well-established theory that

gives optimal convergence rates of the excess risk E[Lf̂ ] of estimator f̂ in terms of sample size n.
Broadly speaking, in the bounded case the optimal rate is usually of order

O ((
COMPn

n
)
γ

) , (1)

where COMPn is a measure of model complexity such as the Vapnik-Chervonenkis (VC) dimension
or the log-cardinality of an optimally chosen ε-net over F , among others. For the models usually
studied in statistics, such complexity measures are sublinear in n, and for “simple” models (often
called parametric models, like those of finite VC dimension in classification) are finite or logarithmic
in n. The exponent γ, which is in the range [1/2,1] in practically all cases of interest, reflects
the easiness of a learning problem by depending on both geometric and statistical properties of
(P, `,F). This exponent is equal to 1/2 in the worst case but can be larger, allowing for faster
rates, if the loss ` has sufficient curvature, e.g., if it is exponentially concave (exp-concave) or
mixable (Cesa-Bianchi and Lugosi, 2006), or if (P, `,F) satisfies “easiness” conditions such as the
Tsybakov margin condition (Tsybakov, 2004), a Bernstein condition (Audibert, 2004; Bartlett and
Mendelson, 2006), or (stochastic) exp-concavity (Juditsky et al., 2008). Because these conditions
and the others on which this paper centers can allow for learning at faster rates, when any of the
conditions hold a learning problem is intuitively easier. We thus call all such conditions easiness
conditions throughout this work. In this literature, one often calls (1) with γ = 1/2 the slow rate
and (1) with γ = 1 the fast rate. We note, however, that the terminology “fast rate” is somewhat
imprecise, as there are special cases for which rates even faster than n−1 are possible (Audibert
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and Tsybakov, 2007). A more precise term may be “optimistic rate” (see (Mendelson, 2017a) for a
lucid discussion), as this is the rate obtainable in the optimistic situation where an easiness condition
holds. We opt for “fast” primarily for historical reasons.

Van Erven et al. (2015) showed that, in the case when the excess losses are bounded1, all
the “easiness” conditions above are subsumed by what they term the v-central condition, where
v is a function that effectively modulates γ. While Van Erven et al. (2015) do show connections
between such conditions for unbounded excess losses as well, they left open the question of whether
the conditions still imply fast rates in that case. Thus, the first main target of the present paper
is to extend this “fast rate theory” to the unbounded and heavy-tailed excess loss case. A main
consequence of our bounds is that under v-GRIP conditions (“GRIP” stands for generalized reversed
information projection), which consist of the v-central condition and a weakening thereof, and an
additional witness condition, the obtainable rates remain the same as in the bounded case.

2. Density Estimation under Misspecification Letting F index a set of probability densities
{pf ∶ f ∈ F} and setting the loss ` to the log loss, `f(z) = − log pf(z), we find that the statistical
learning problem becomes equivalent to density estimation, the excess risk becomes equal to the
generalized Kullback-Leibler (KL) divergence

D(f∗ ∥ f̂) = EZ∼P [log(pf∗(Z)/pf̂(Z))],

and ERM becomes maximum likelihood estimation. We call a modelF well-specified if it is correct,
i.e., if pf∗ is the density of the true distribution P ; in that case D(f∗ ∥ f̂) becomes the standard KL
divergence. In this setting, our results thus automatically become convergence bounds of estimators
f̂ to the KL-optimal density within F , where the convergence itself is in terms of KL divergence
rather than more usual, weaker metrics such as Hellinger distance. Here, our results vastly general-
ize earlier results on KL bounds which typically rely on strong conditions such as boundedness of
likelihood ratios or exponential tail conditions (Birgé and Massart, 1998; Yang and Barron, 1998;
Wong and Shen, 1995; Sason and Verdú, 2016); in this work, the much weaker witness condition
suffices.

We also provide bounds that are more similar to the standard Hellinger-type bounds and that
hold without the witness condition, having a generalization of squared Hellinger distance (suitable
for misspecification) rather than KL divergence on the left. Our bounds also allow for estimators
that output a distribution Π on F rather than a single f̂ and are particularly well-suited for η-
generalized Bayesian posteriors, in which the likelihood in the prior-posterior update is raised to a
power η; standard Bayes corresponds to η = 1. We thus can compare our rates to classical results on
Bayesian rates of convergence in the well-specified case, such as in the influential paper (Ghosal,
Ghosh, and van der Vaart, 2000) (GGV from now on). In this case, we generally obtain rates
comparable to those of GGV, but under weaker conditions, as long as we take η (arbitrarily close
to but) smaller than 1, a fact already noted for η-generalized Bayes by Zhang (2006a); Martin et al.
(2017); Walker and Hjort (2002). In contrast to earlier work, however, our results remain valid in the
misspecified case, although η has to be adjusted there to get convergence at all; moreover, the rates
obtained are with respect to a new “misspecification metric” and hence are not always comparable
to those obtained in the well-specified case. The optimal η depends on the “best” parameter v for
which a v-GRIP condition holds. Grünwald and Van Ommen (2017) give a simple example which

1. Van Erven et al. (2015) actually assume that the losses are bounded, but inspection of the results therein reveals that
all that is needed is in fact bounded excess losses.
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shows that taking η = 1 (standard Bayes) in regression under misspecification can lead to results
that are dramatically worse than taking the right η, thus showing that our results do have practical
implications.

3. η-generalized Bayes and PAC-Bayes The η-generalized Bayesian posterior can be further
generalized: for general loss functions `, we can define “posteriors” ΠB

n with densities given by

dΠB
n

dΠ0
(f) ≡ πBn (f) ≡ πB(f ∣ z1, . . . , zn) ∶=

exp (−η∑ni=1 `f(zi))

∫F exp (−η∑ni=1 `h(zi)) ⋅ dΠ0(h)
, (2)

for some “prior” distribution Π0 on F . This idea goes back at least to Vovk (1990) and is cen-
tral in the PAC-Bayesian approach to statistical learning (McAllester, 2003). Recently, it has also
been embraced within the Bayesian community (Bissiri et al., 2016; Miller and Dunson, 2018).
Nevertheless, the communities studying frequentist convergence of Bayesian methods under mis-
specification and PAC-Bayesian analysis are still largely separate; yet, the present paper shows that
the approaches can be analyzed using the very same machinery and that it is fruitful to do so. To
wit, all our results are based on an existing lemma due to T. Zhang (2006b; 2006a) which provides
convergence bounds in terms of an “annealed” pseudo-excess risk for general estimators; these
bounds are optimized if one plugs in η-generalized Bayesian estimators of the general form above.
Zhang’s bound is itself based on earlier works in the information theory literature (in particular,
the Minimum Description Length (MDL) literature) (Barron and Cover, 1991; Li, 1999)) and the
PAC-Bayesian literature (Catoni, 2003; Audibert, 2004). Of course, the technique also has some
disadvantages, to which we return in the Discussion (Section 7).

1.1. Overview and Main Insights of the Paper

Section 2 formalizes the setting; Section 7 discusses additional related work and potential future
work and provides discussion. The paper ends with appendices containing all long proofs, technical
details concerning infinities, and some additional examples. The main results are in Sections 3–6:

Section 3: Zhang’s Bound; Information Complexity In Section 3, for which we do not claim
any novelty, we present Lemma 5; this lemma is T. Zhang’s (2006b; 2006a) result that bounds a
pseudo-excess risk of estimator f̂ ∶ Zn → F in terms of the information complexity ICn,η. A very
simplified form of this lemma is

E
ANN(η)
Z∼P [Lf̂] ⊴η⋅n ICn,η, (3)

where the pseudo-excess risk E
ANN(η)
Z∼P is formally defined in (11) and ⊴ indicates exponential

stochastic inequality (ESI), a useful notational tool which we define. ESI implies both inequal-
ity in expectation and with high probability over the sample Zn that determines f̂ ≡ f̂(Zn); the
subscript η ⋅ n is only relevant for the in-probability version (see Proposition 3) and can be ignored
for now. The actual bound (14) we provide in Lemma 5 generalizes (3), also allowing for estimators
that output a distribution such as generalized Bayesian posteriors as given by (2). ICn,η is a notion
of model complexity which, apart from n and η, also depends (for now suppressed in the notation)
on the data Zn, the choice of estimator f̂ or Πn, and on a distribution Π0 on F which we may think
of as “something like” a prior: while the bound holds for any fixed Π0, the estimator that minimizes
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ICn,η for given prior Π0 and data Zn is the corresponding η-generalized Bayesian posterior ΠB
n

given by (2).
For this choice of estimator, one can often design priors such that, with high probability and in

expectation, ICn,η for the η-generalized Bayesian estimator can be upper bounded as

ICn,η = Õ (
COMPn

ηn
) , (4)

for functions COMPn that rely on the model F’s complexity as indicated above (the Õ-notation
suppresses logarithmic factors). In Section 3 we show that in the application to well-specified
density estimation, priors can always be chosen such that the classical posterior contraction rates
of GGV are (essentially) recovered for any fixed η > 0, in the sense that (3) would imply the same
rates if the left-hand side were replaced by a squared Hellinger distance. For example, for standard
finite and parametric statistical models, we obtain for Bayesian estimators that COMPn = Õ(1); for
the nonparametric statistical models considered by GGV, we obtain COMPn = Õ(nα) for an α such
that (4) becomes the minimax optimal rate. Similar bounds on ICn,η with general loss functions
are given in Section 6. Henceforth, we use the term parametric to refer to F for which generalized
Bayes estimators give COMPn = O(logn) = Õ(1).

We would thus get good convergence bounds if the left-hand side of (3) were the actual excess
risk, but instead it is an “annealed” version thereof, always smaller than the actual excess risk
and sometimes even negative. All of our own results can be viewed as establishing conditions
under which the annealed excess risk can either be related to the actual excess risk or otherwise to a
(generalized Hellinger) metric measuring “distance” between f∗ and f in some manner; this is done
by modifying η. Both the information complexity and its upper bound (4) can only increase as we
decrease η (Proposition 6); yet, for small enough η, annealed convergence implies convergence in
the sense in which we are interested (either excess risk or generalized Hellinger distance) up to some
constant factor (Sections 4 and 5) and sometimes with an additional slack term (Sections 5 and 6).
Thus, the optimal η is given by a tradeoff between information complexity and these additional
factors and terms.

Sections 4–6 each contain (a) a condition enabling a link between annealed excess risk and the
divergence of interest in that section; (b) a new theoretical concept underlying the condition, (c)
convergence result(s) relating information complexity to an actual metric or excess risk, and (d)
example(s) that illustrate it.

Section 4: The Strong Central Condition and a New Metric; First Convergence Result The
strong central condition (Van Erven et al., 2015) expresses that the lower tail of the excess loss
Lf ∶= `f − `f∗ is exponential, i.e., P (`f∗ − `f > A) is exponentially small in A. It has a parameter
η̄ > 0 that determines the precise bound that can be obtained. While this may sound like a very
strong condition, due to the nature of the log loss it automatically holds for density estimation with
η̄ = 1 if the model is well-specified or convex. We show (Theorem 10) that the η̄-strong central
condition is sufficient for convergence in a new “misspecification” metric dη̄ (Definition 8) that
generalizes the Hellinger distance: there exist estimators such that for every 0 < η < η̄,

d2
η̄(f

∗, f̂) ⊴η⋅n Cη ⋅ ICn,η,

where Cη is a constant that tends to ∞ as η ↑ η̄ and is bounded by 1 if η ≤ η̄/2. For misspecified
models, η̄ can in principle be either smaller or larger than 1. This metric is mainly of interest in the
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density estimation application of our work, and we thus compare our results to those of GGV for
well-specified density estimation and illustrate them for the case of misspecified generalized linear
models (GLMs). Plugging in any fixed η < η̄ in (4) and comparing to (1), we see that under the
strong central condition, we can always achieve the fast rate, i.e., (1) with γ = 1.

Section 5: The Witness Condition and a First Excess Risk Convergence Result Here we con-
sider when, under the strong central condition, we can get bounds on the actual excess risk (or, in
density estimation, on the generalized KL divergence). We provide a new concept, the empirical
witness of badness condition, or witness condition for short, which provides control over the up-
per tail of the excess loss Lf = `f − `f∗ (whereas the central condition concerns the lower tail).
Essentially, the witness condition says that whenever f ∈ F is worse than f∗ in expectation, the
probability that we witness this in our training example should not be negligibly small. We thus
rule out the case that f has extremely large loss with extremely small probability. This condition
turns out to be quite weak — it can still hold if, for example, the excess loss `f − `f∗ is heavy-tailed
(it suffices for the conditional second moment of the target to be uniformly bounded almost surely;
see Example 7). Thus we establish our first excess risk convergence result, Theorem 14, which,
in its simplest form, says that if both the central condition holds with parameter η̄ and the witness
condition holds, then for all 0 < η < η̄,

E[Lf̂ ] ⊴η⋅n/aη aη ⋅ ICn,η, (5)

where aη is a constant that again tends to ∞ as η ↑ η̄. Once again, by combining (5) and (4), we see
that under a witness and η̄-central condition, we can achieve the fast rate by taking γ = 1 in (1).

The witness condition vastly generalizes earlier conditions such as boundedness of likelihood
ratios in density estimation (Birgé and Massart, 1998; Yang and Barron, 1998) and the exponential
tail condition of Wong and Shen (1995). Moreover, (5) (Theorem 14) is based on Lemma 13, which
generalizes earlier results relating KL divergence to Hellinger and Rényi-type divergences such as
those of Yang and Barron (1999), Haussler and Opper (1997), Birgé and Massart (1998), Wong
and Shen (1995), and Sason and Verdú (2016). We also discuss the similarity between the witness
condition and the recently introduced small-ball assumption of Mendelson (2014).

Section 6: Weaker Fast Rate Conditions; the GRIP The η̄-central condition of Section 4 can be
generalized to the v-central condition, where v ∶ R+ → R+ is a non-decreasing function; nonconstant
v(x) gives weaker conditions that still allow for fast rates. Van Erven et al. (2015) showed that for
the bounded excess loss case, most existing easiness conditions can be shown to be equivalent to
either a v-central condition or to what they call a v-PPC (pseudo-probability-convexity) condition.
In one of their central results, they show these two seemingly different conditions to be equivalent
to one another, and also, if v is of the form v(x) ≍ x1−β , (essentially) equivalent to a (B,β)-
Bernstein condition (Audibert, 2004; Bartlett and Mendelson, 2006). In this section we show that
for unbounded excess losses, the v-central and v-PPC conditions become quite different from each
other (and also from the Bernstein condition): the v-PPC condition allows for heavy- (polynomial)
tailed loss distributions, whereas the v-central condition does not.

We first present Theorem 22, an excess risk bound under the v-central condition that is a rel-
atively straightforward consequence of Theorem 14, our risk bound under the η̄-central condition.
We then move to Theorem 29, a similar excess risk bound under the v-PPC condition. This theorem
involves the GRIP, the novel, fundamental concept of this section (Definition 23). GRIP stands
for generalized reversed information projection and generalizes the concept of reversed information
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projection introduced by Li (1999). The GRIP mη
F is an η-dependent pseudo-predictor (it might

achieve smaller risk than any f for which `f is defined). We show that, for each η, if f∗ is replaced
by the GRIPmη

F , then the convergence result (5) above holds. We can interpret the v-PPC condition
as controlling the excess risk of f∗ over the GRIP mη

F as a function of η: the smaller η, the smaller
this excess risk. This determines, for each sample size, an optimal η at which the bound (5) and
the excess risk of f∗ relative to mη

F balance. Theorem 22 establishes that whenever the witness
condition holds and a v-central condition holds, we have, for every ε > 0, for η < v(ε),

E[Lf̂ ] ⊴η⋅n/a′η a′η ⋅ ICn,η + ε; (6)

where again a′η is a constant. Theorem 29 shows that if a v-PPC condition holds, the same result
holds whenever η < v(ε)/2, but now only in expectation, for yet another a′η. Thus, the optimal rate
now depends on v; in particular, if v(ε) ∝ ε1−β , then we can optimize over ε using upper bound
(4) and find that, as long as COMPn is logarithmic in n (as in parametric settings), by setting η at
sample size n equal to η ≍ n−(1−β)/(2−β) we obtain the rate

E[Lf̂ ] = Õ (n
− 1

2−β ) (7)

which interpolates between the fast rate ((1) with γ = 1) and the slow rate (γ = 1/2), where γ =

1/(2 − β) depends on β. Such calculations are well-known for the bounded loss case, and our
results establish that the same story continues to hold for the unbounded excess loss case, as long as
a witness condition holds — even for heavy-tailed losses. While Theorems 22 and 29 are applicable
to the unbounded-loss-yet-bounded risk case (for which supf∈F E[`f ] < ∞), Theorem 31 extends
this result to the unbounded risk case, requiring a slight generalization of the witness condition.
Examples 11 and 12 illustrate our results by considering regression with heavy-tailed losses, the
latter example further linking the aforementioned small-ball assumption to our generalized witness
condition.

The Picture that Emerges Our results point to three separate factors that determine achievable
convergence rates for generalized Bayesian, two-part MDL, and empirical risk minimization (ERM)
estimators, which often, but not always (see below) coincide with minimax rates:

1. The information complexity ICn,η, which determines the “richness” of the model. It is data-
and algorithm- dependent, but we can often bound it with high probability or even indepen-
dently of the underlying P . In addition, to see what rates can be achieved, we can plug in the
(η-generalized Bayesian) learning algorithms that minimize it.

2. The interaction between P , `, and F that determines, for each f ∈ F , the distribution of
the lower tail of the excess loss Lf . This interaction is sometimes called the easiness of the
problem (Koolen et al., 2016); it determines the optimal η at which a bound on η-information
complexity implies a bound on the generalized Hellinger-type metric. This is captured by our
v-GRIP conditions, which generalize several existing easiness conditions.

3. The interaction between P , `, and F that determines the distribution of the upper tail of the
excess loss. This interaction plays no role for bounded excess losses and no role for density
estimation if one only cares about convergence in the weak misspecification metric. Yet
for unbounded excess losses with the excess risk target (or density estimation with KL-type
target), this interaction becomes crucial to take into account and is done so via the witness
condition.

7
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In the Discussion (Section 7), Figure 1 summarizes how the various conditions hang together and
are in some special cases (e.g. squared loss) implied by existing, better-known easiness conditions
imposed in other works.

What we do not cover We stress at the outset that we do not cover everything there is to know
about the type of convergence bounds we prove. First of all, our bounds are most useful for ERM,
η-generalized Bayesian, and MDL estimators, for a specific η that depends on the learning problem
(P, `,F) and often also on n. Thus to apply generalized Bayes/MDL in practice, η needs to be
determined in some data-driven way; we discuss various ways to do this in Section 7. Note though
that our bounds can be directly used for ERM, which can be implemented without knowledge of η.

We also leave untouched the fact that for parametric models, Zhang’s bounds lead to an un-
necessary logn-factor in the convergence rates. Zhang (2006b; 2006a), following Catoni (2003),
addresses this issue by a relatively straightforward “localized” modification of his bound; since it
distracts from our main points (the witness and GRIP conditions, which lead to polynomial gains in
rate), we will simply ignore all logarithmic factors in this paper.

Third, the new convergence rates for η-generalized Bayesian, MDL, and ERM estimators that
we establish are in some cases, but not always, minimax optimal. We do explicitly discuss for
each example below whether the obtained rates are optimal and discuss exceptions, unknowns, and
potential remedies in Section 7.

Finally, we only discuss proper and randomized proper learning algorithms and estimators here.
This means that our estimators either output an f̂ ∈ F or, if they output a distribution Π ∣ Zn, it
is always a distribution on F , and the quality of this distribution is evaluated by the expected loss
incurred if one draws an f randomly from Π ∣ Zn. The terminology “proper” is from learning
theory (Lee et al., 1996); in statistics such estimators are sometimes called “in-model” (Grünwald,
2007). In learning theory, one often considers more general “improper” set-ups in which one can
play an element of (say) conv(F), the convex hull of F , which sometimes improves the obtainable
rates. We briefly return to this issue in Example 11 and Section 7.

8



FAST RATES FOR GENERAL UNBOUNDED LOSS FUNCTIONS:FROM ERM TO GENERALIZED BAYES

Notation Description Page
General notation
Zn i.i.d. sample; Zn = (Z1, Z2, . . . , Zn) ∼ P

n 2
P Probability distribution over Z 2
f̂ Deterministic estimator or learning algorithm; f̂ ≡ f̂(Zn) 2
(P, `,F) Learning problem for distribution P , loss function `, and model F 2
`f Loss of hypothesis f ; `f(z) ≡ `(f, z) and `f ≡ `f(Z) 10
f∗ Risk minimizer within F 2
Lf Excess loss (w.r.t. f∗) of f ; Lf(z) ≡ `f(z) − `f∗(z) and Lf ≡ Lf(Z) 2
ΠB
n (and πBn ) η-generalized Bayesian posterior (and its density relative to Π0) 4

⊴η Exponential stochastic inequality (E.S.I.) 13
Π∣ Randomized estimator or learning algorithm; Π∣ ∶ ⋃

∞
n=0Z

n →∆(F) 10
Πn Output of algorithm Π∣ based on sample Zn; Πn ≡ Π ∣ Zn 10
Π0 Prior; Π0 ≡ Π ∣ {} 12
µ Common dominating measure for {pf}f∈F in the case of log loss 11
f̈2-P η-generalized two-part MDL estimator for prior Π0 at sample size n 12
(f̂ ,Π0) Deterministic estimator f̂ viewed as randomized estimator 12
EHE(η) [U] Hellinger-transformed expectation; EHE(η) [U] = 1

η
(1 −E [e−ηU ]) 13

EANN(η) [U] Annealed expectation; EANN(η) [U] = − 1
η

logE [e−ηU ] 13

ICn,η(Π∣) Information complexity 14
pf,η entropified loss; pf,η(z) = p(z)

exp(−ηLf (z))
E[exp(−ηLf (Z))] 18

dη̄(⋅, ⋅) misspecification metric 18
N(A, ∥ ⋅ ∥, ε) ε-covering number of (A, ∥ ⋅ ∥) 30
Divergences
KL(⋅ ∥ ⋅) Standard Kullback-Leibler divergence 12
H1/2(⋅ ∥ ⋅) standard (squared) Hellinger distance 18
Hη(⋅ ∥ ⋅) η-generalized Hellinger divergence 18
Dα(p∥q) Rényi divergence of order α; Dα(p∥q) =

1
α−1

log ∫ p
αq1−αdµ 48

Pseudo-predictors
F̄ enlarged action space F̄ ⊇ F that also contains pseudo-predictors 28
f∗ε pseudo-predictor, defined via its loss by `f∗ε (z) = `f∗(z) − ε for all z ∈ Z 28
EF,η set of pseudoprobability densities; EF,η = {e−η`f ∶ f ∈ F} 31
ξQ mixture of pseudoprobability densities; ξQ = Ef∼Q[e−η`f ] 31

mη
F or `gη GRIP; E[mη

F ] = infQ∈∆(F)E [− 1
η

logEf∼Q[e−η`f ]] 31

mη
Q mix loss for Q ∈ ∆(F); mη

Q = − 1
η

logEf∼Q[e−η`f ] 31

mη
A generalized GRIP w.r.t. A ⊆ F̄ ; E[mη

A] = inf
Q∈∆(A∪{f∗})

E[mη
Q] 31

mη
f mini-grip w.r.t. f ; E[mη

f ] = inf
α∈[0,1]

E [−
1

η
log ((1 − α)e−η`f∗ + αe−η`f )] 59

gηF and gηf pseudo-actions for GRIP losses mη
F and mη

f respectively 59

9
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Notation Description Page
Conditions
(β,B)-Bernstein E[L2

f ] ≤ B (E[Lf ])
β for all f ∈ F 26

strong η̄-central ∃f∗ ∈ F s.t. `f∗ − `f ⊴η̄ 0 for all f ∈ F 17
η-central up to ε ∃f∗ ∈ F s.t. `f∗ − `f ⊴η ε for all f ∈ F 28
v-central for all ε ≥ 0, ∃f∗ ∈ F s.t. `f∗ − `f ⊴v(ε) ε for all f ∈ F 28
η-PPC up to ε ∃f∗ ∈ F s.t. EZ∼P [`f∗ −m

η
F] ≤ ε 31

v-PPC for all ε ≥ 0, ∃f∗ ∈ F s.t. EZ∼P [`f∗ −m
v(ε)
F ] ≤ ε 31

(u, c)-witness E [(`f − `f∗) ⋅ 1{`f−`f∗≤u}] ≥ cE[`f − `f∗] for all f ∈ F 22

(τ, c)-witness generalized version of (u, c)-witness condition (see Definition 12) 23
witness w.r.t. φ (u, c)-witness condition with dynamic comparator (see Assumption 1) 59
weak witness w.r.t. φ weakened version of the previous condition (see Assumption 1) 59
unif. exp. upper tail Uf (for f ∈ F) has condition if ∃κ ∈ (0,∞) s.t. supf∈F E [eκUf ] < ∞ 25
small-ball assumption ∃κ > 0 and ε ∈ (0,1) s.t. ∀f, h ∈ F , Pr (∣f − h∣ ≥ κ∥f − h∥L2(P )) ≥ ε 27
convex luckiness (for squared loss); arg minf∈F E[`f ] = arg minf∈conv(F)E[`f ] 26

2. Setting, Technical Preliminaries, Global Assumptions

We now formally introduce the problem setting, cover some preliminaries, and state the assump-
tions used throughout this work. A glossary appearing on this page and the last one describes all
frequently used symbols and conditions.

Let `f(z) ∶= `(f, z) ∈ R ∪ {∞} denote the loss of action f ∈ F under outcome z ∈ Z . In the
classical statistical learning problems of classification and regression with i.i.d. samples, we have
Z = X × Y . Classification (0-1 loss) is recovered by taking Y = {0,1} and `f(x, y) = ∣y − f(x)∣,
and we obtain regression with squared loss by taking Y = R and `f(x, y) = (y − f(x))2. In either
case, the class F is some subset of the set of all functions f ∶ X → Y , such as the set of decision
trees of depth at most 5 for classification. Our setting also includes conditional density estimation
(see Example 1). Unless we explicitly state otherwise, whenever we introduce a random variable
we assume it is a function of Z,Z1, . . . , Zn which are i.i.d. ∼ P . If we write `f we mean `f(Z).

While in frequentist statistics one mostly considers learning algorithms (often called “estima-
tors”) that always output a single f ∈ F , we also will consider algorithms that output distribu-
tions on F . Such distributions can, but need not, be Bayesian or generalized Bayesian posteriors
as described below. Formally, a learning algorithm based on a set of predictors F is a function
Π∣ ∶ ⋃

∞
n=0Z

n → ∆(F), where ∆ is the set of distributions on F . The output of algorithm Π∣ based
on sample Zn is written as Π ∣ Zn and abbreviated to Πn. Πn is a function of Zn and hence a
random variable under P . For fixed given zn, Π ∣ zn is a measure on F . Importantly, our learning
algorithms are always defined such that they can also output a distribution Π0 based on an empty
data sequence; we may think of this as a “prior” guess of f . We explain below how to recast stan-
dard estimators such as ERM, for which Π0 is undefined, in this framework. Whenever we consider
a distribution Π on F for a problem (P, `,F), we denote its outcome, a random variable, as f .
Whenever we compare the performance of a learning algorithm Π∣ to a fixed f̃ ∈ F , we call f̃ a
comparator. f̃ is called optimal or risk-minimizing if E[`f(Z) − `f̃(Z)] ≥ 0 for all f ∈ F ; under
the assumptions below, this expectation is always well-defined. We usually (but not in Section 6

10
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and the proofs) take as our comparator f̃ = f∗, where f∗ is a risk minimizer. Whenever this cannot
cause confusion, we write Lf = `f − `f∗ for the excess loss relative to f∗.

Assumptions on Learning Algorithms Π∣ Whenever in the sequel we mention a learning algo-
rithm Π∣, we make the following (very mild) assumptions: (1) for all n, zn ∈ Zn, Πn has a density
πn ≡ π ∣ zn relative to the prior distribution Π0; (2) Π0 satisfies the natural requirement that for all
z ∈ Z , Π0(f ∈ F ∶ `f(z) < ∞) > 0.

Assumptions on and Conventions for Learning Problems (P, `,F) All of our mathematical re-
sults concern learning problems (P, `,F) for which we invariably make the following assumptions:

1. Unless the loss function ` is log-loss or conditional log-loss (see the example below), it is is
uniformly bounded from below in the sense that inff∈F infz∈Z `f(Z) > −∞.

2. For (conditional) log-loss, we assume for all f ∈ F that pf is a probability density relative
to some fixed common dominating measure µ, so that Pf , the distribution with density pf , is
absolutely continuous with respect to µ; we also assume that P itself is absolutely continuous
with respect to µ. Moreover, we additionally assume that

KL(P ∥Pf∗) < ∞ (8)

and, with H(P ) the differential entropy of P relative to µ,

H(P ) > −∞. (9)

3. The learning problem is nontrivial in the sense that for some f ∈ F , EZ∼P [`f(Z)] < ∞ (we
require this irrespective of whether ` is log-loss).

4. There exists an optimal f ∈ F . We fix any one among these (our results hold no matter which
we take) and denote it by f∗.

Some of our results continue to hold without the final assumption; we shall in all cases say so ex-
plicitly. Since we invariably want to impose these assumptions, from now on learning problems
(P, `,F) are defined to be such that they satisfy these four assumptions, and we will not explicitly
mention them any more. The assumptions, and all other issues concerning unboundedness and in-
finities, are discussed in detail in Appendix H. The requirement that the loss is bounded from below
ensures that there are no issues involving undefined expectations or problems with interchanging
order of expectations, as we show in Appendix H.1. It holds for just about all loss functions en-
countered in the literature, except for log-loss defined on continuous outcome spaces, where the
log-loss can be unbounded both from above and below; in Appendix H.2 we motivate the require-
ments we impose on log-loss and show that, while very mild, they are still sufficient to make all
expectations well-defined.

Example 1 (Conditional Density Estimation) Let Z = X ×Y and let {pf ∣ f ∈ F} be a statistical
model of conditional densities for Y ∣X , i.e., for each x ∈ X , pf(⋅ ∣ x) is a probability density on Y
relative to a fixed underlying measure µ. Take (conditional) log loss, defined on outcome z = (x, y)

as `f(x, y) = − log pf(y ∣ x). The excess risk, now E[Lf ] = EZ∼P [log
pf∗(Y ∣X)
pf (Y ∣X) ], is formally

equivalent to the generalized KL divergence, as already defined in the original paper by Kullback

11
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and Leibler (1951) that also introduced what is now the “standard” KL divergence. Assuming that
P has a density p relative to the underlying measure, and denoting standard KL divergence by KL,
we have KL(p ∥pf) = EZ∼P [log

p(Y ∣X)
pf (Y ∣X)], so that E[Lf ] = KL(p ∥pf) − KL(p ∥pf∗). Thus,

minimizing the excess risk under log loss is equivalent to learning a distribution minimizing the
KL divergence from P over {pf ∶ f ∈ F}. We have inff∈F KL(p ∥pf) = KL(p ∥pf∗) = ε ≥ 0. If
ε = 0, we must have pf∗ = p, so we deal with a standard well-specified density estimation problem,
i.e., the model {pf ∣ f ∈ F} is “correct” and f∗ ∈ F represents the true P . If ε > 0, we still have
inff∈F E[Lf ] = 0 and may view our problem as learning an f that is closest to f∗ in generalized
KL divergence. ◻

Generalized (PAC-) Bayesian, Two-Part, and ERM Estimators Although our main results hold
for general estimators, Proposition 6 below indicates that they are especially suited for generalized
Bayesian, two-part MDL, or ERM estimators, since these minimize the bounds provided by our the-
orems under various constraints. To define these estimators, fix a distribution Π0 on F , henceforth
called prior, and a learning rate η > 0. The η-generalized Bayesian posterior based on prior Π0, F
and sample z1, . . . , zn is the distribution ΠB

n on f ∈ F , defined by (2). By our requirement that for
all z ∈ Z , Π0(f ∈ F ∶ `f(z) < ∞) > 0, (2) is guaranteed to be well-defined.

Now, given a learning problem as defined above, fix a countable subset F̈ of F , a distribution
Π0 concentrated on F̈ and define the η-generalized two-part MDL estimator for prior Π0 at sample
size n as

f̈2-P ∶= arg min
f∈F̈

n

∑
i=1

`f(Zi) +
1

η
⋅ (− log Π0({f})) , (10)

where, if the minimum is achieved by more than one f ∈ F̈ , we take the smallest in the countable
list, and if the minimum is not achieved, we take the smallest f in the list that is within 1/n of the
minimum. Note that the η-two part estimator is deterministic: it concentrates on a single function.
ERM is recovered for finite F by setting the prior Π0 to be uniform over F̈ . We may view the η-two
part estimator as a learning algorithm Π∣ in our sense by defining Π0 to be the prior on F̈ as above
and, for each n, Πn as the distribution that puts all of its mass at f̈2-P at sample size n. While we
could denote this estimator as Π∣2-P, it will be convenient to write (f̈2-P,Π0) so as to also specify the
prior. In the same way, general priors Π0 combined with general deterministic estimators f̂ defined
for samples of length ≥ 1 may be viewed as learning algorithms Π∣ which we will denote as (f̂ ,Π0).

Finally, we formally define the ERM estimator as the f ∈ F that minimizes∑nj=1 `f(Zj); when-
ever we refer to ERM we will make sure that at least one such f exists; ties can then be broken in
any way desired. It is important to note that ERM can be applied without knowledge of η; how-
ever, for general two-part and Bayesian estimators we need to know η — we return to this issue in
Section 7.

3. Annealed Risk, ESI, and Complexity

In this section we present Lemma 5, a PAC-Bayesian style bound that underlies all our results to
follow. Remarkably, it holds without any regularity conditions. However, on the left hand side it
has an “annealed” version of the risk rather than the actual risk. In Sections 4, 5, and 6 we give
conditions under which the annealed risk can be replaced by either a Hellinger-type distance or the
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standard risk, which is what we are really interested in. Lemma 5 relates the annealed risk to an
information complexity via exponential stochastic inequality (ESI). We now introduce the technical
notions of annealed expectation and ESI. We then present Lemma 5 and discuss its right-hand side,
the information complexity. We do not claim any novelty for the technical results in this section —
the lemma below can be found in (Zhang, 2006b,a), for example. Still, we need to treat these results
in some detail to prepare the new results in subsequent sections.

3.1. Main Concepts: Annealed and Hellinger Risk, ESI

For η > 0 and general random variables U , we define, respectively, the Hellinger-transformed ex-
pectation and the annealed expectation (terminology from statistical mechanics; see e.g. (Haussler
et al., 1996)), also known as Rényi-transformed expectation (terminology from information theory,
see e.g. (Van Erven and Harremoës, 2014)) as

EHE(η)
[U] ∶=

1

η
(1 −E [e−ηU ]) ; EANN(η)

[U] ∶= −
1

η
logE [e−ηU ] , (11)

with log the natural logarithm. We will frequently use that for η > 0,

EHE(η)
[U] ≤ EANN(η)

[U] ≤ E[U] (12)

where the first inequality follows from − logx ≥ 1 − x and the second from Jensen. We also note
that if, for example, U is bounded, then the inequalities become equalities in the limit:

Proposition 1 If E[e−ηX] < ∞, we have limη↓0 EHE(η)[X] = E[X] and we also have that η ↦
EANN(η)[X] is non-increasing.

All our results below may be expressed succinctly via the notion of exponential stochastic inequality.

Definition 2 (Exponential Stochastic Inequality (ESI)) Let η > 0 and let U,U ′ be random vari-
ables on some probability space with probability measure P . We define

U ⊴η U ′
⇔ EU,U ′∼P [eη(U−U

′)
] ≤ 1. (13)

In all our applications of this notation, P is the distribution appearing in a given learning prob-
lem (P, `,F) that will be clear from the context; hence, we omit it in the ESI notation. An ESI
simultaneously captures “with (very) high probability” and “in expectation” results.

Proposition 3 (ESI Implications) For all η > 0, if U ⊴η U
′ then, (i), E[U] ≤ E[U ′]; and, (ii), for

all K > 0, with P -probability at least 1 − e−K , U ≤ U ′ +K/η (or equivalently, for all δ ≥ 0, with
probability at least 1 − δ, U ≤ U ′ + η−1 ⋅ log(1/δ)).

Proof Jensen’s inequality yields (i). Apply Markov’s inequality to e−η(U−U
′) for (ii).

The following proposition will be extremely convenient for our proofs:

Proposition 4 (Weak Transitivity) Let (U,V ) be a pair of random variables with joint distribu-
tion P . For all η > 0 and a, b ∈ R, if U ⊴η a and V ⊴η b, then U + V ⊴η/2 a + b.

Proof From Jensen’s inequality: E[e
η
2
((U−a)+(V −b))] ≤ 1

2 E[eη(U−a)] + 1
2 E[eη(V −b)].
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3.2. PAC-Bayesian Style Inequality

All our results are based on the following lemma due to Zhang (2006b):

Lemma 5 Let (P, `,F) represent a learning problem with Lf the excess loss relative to an optimal
f∗. Let Π∣ be a learning algorithm (defining a “prior” Π0) for this learning problem that outputs
distributions on F . For all η > 0, n ∈ N, we have:

Ef∼Πn [E
ANN(η)
Z∼P [Lf]] ⊴η⋅n ICn,η (Π∣) . (14)

where ICn,η is the information complexity, defined as:

ICn,η(Π∣) ∶= Ef∼Πn [
1

n

n

∑
i=1

Lf(Zi)] +
KL(Πn ∥Π0)

η ⋅ n
. (15)

By the finiteness considerations of Appendix H, ICn,η(Π∣) is always well-defined but may in some
cases be equal to −∞ or ∞. We prove a generalized form of this result, which does not require ex-
istence of an optimal f∗, in Appendix A.1 The proof is essentially taken from the proof of Theorem
2.1 of Zhang (2006b) and is presented only for completeness.

This result is similar to various results that have been called PAC-Bayesian inequalities, al-
though this name is sometimes reserved for a different type of inequality involving an empirical
(observable) quantity on the right that does not involve f∗ (McAllester, 2003). Lemma 5 general-
izes earlier in-expectation results by Barron and Li (1999) for deterministic estimators rather than
(randomized) learning algorithms; these in-expectation results further refine in-probability results
of Barron and Cover (1991), arguably the starting point of this research.

To explain the potential usefulness of Lemma 5, let us weaken (14) to an in-expectation state-
ment via Proposition 3, so that it reduces to:

EZn∼P [Ef∼Πn [EANN(η)
[Lf ]]] ≤ EZn∼P [ICn,η (Π∣)] . (16)

If the annealed expectation were a standard expectation, the left-hand side would be an expected
excess risk. Then we would have a great theorem: by (16), the lemma bounds the expected excess
risk of estimator Π∣ by a complexity term, which, as we will see below, generalizes a large number
of previous complexity terms (and allows us to get the same rates), both for well-specified density
estimation and for general loss functions. The nonstandard inequality ⊴ implies that we get such
bounds not only in expectation but also in probability. The only problem is that the left-hand side
in Lemma 5 is not the standard risk but the annealed risk, which is always smaller and can even
be negative. It turns out however that — as already suggested, but not proved by Proposition 1 —
by making η small enough, the left-hand side can in many cases be related to the standard excess
risk or another divergence-like measure after all. The conditions which allow this are the subject of
Sections 4–6; but first, in the remainder of the this section we study the complexity term in detail.

3.3. Information Complexity

The present form of the information complexity is due to Zhang (2006b), with precursors from
Rissanen (1989); Barron and Cover (1991); Yamanishi (1998). For generalized Bayesian, two-part
MDL and standard ERM, a first further bound is given via the following proposition, the first part
of which is also from Zhang (2006b); we note that this result can be extended to the generalized
definition of ICn,η given in Section A.1; the extended result does not rely on the existence of f∗.
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Proposition 6 Consider a learning problem (P, `,F) and let Zn ≡ Z1, . . . , Zn be any sample with
∑
n
i=1 `f∗(Zi) < ∞ (this will hold a.s. if Zn ∼ P ). Let Π0 be a distribution on F . and let ΠB

∣ be the

corresponding η-generalized Bayesian posterior, with, for each n, πBn given by (2). We have for all
η > 0 that ICn,η(Π

B
∣ ) is non-increasing in η, and that

n ⋅ ICn,η(Π
B
∣ ) = n ⋅ inf

Π∣∈RAND
ICn,η(Π∣) = −

1

η
logEf∼Π0 exp(−η

n

∑
i=1

Lf(Zi)) (17)

≤ inf
A

{−
1

η
log Π0(A) + n ⋅ ICn,η(Π

B
∣ ∣ f ∈ A)} (18)

≤ inf
A

{−
1

η
log Π0(A) +Ef∼Π0∣A [

n

∑
i=1

Lf(Zi)]} , (19)

where RAND is the set of all learning algorithms Π′
∣ that can be defined relative to (P, `,F) with

Π′
0 = Π0 and the second infimum is over all measurable subsets A ⊆ F . In the special case that Π0

has countable support F̈ so that the η-two part estimator (10) is defined, we further have

n ⋅ ICn,η(Π
B
∣ ) ≤ n ⋅ inf

ḟ∈DET
ICn,η((ḟ ,Π0)) (20)

= n ⋅ ICn,η(f
∗
∥(f̈2-P,Π0)) ≤ inf

f∈F̈
{−

1

η
log Π0({f}) +

n

∑
i=1

Lf(Zi)} ,

where DET is the set of all deterministic estimators with range F̈ .

From Lemma 5 and this result, we see that we have three equivalent characterizations of information
complexity for η-generalized Bayesian estimators. First, there is just the basic definition (15) with
Πn instantiated to the η-generalized Bayesian posterior. Second, there is the characterization as
the minimizer of (15) for the given data, over all distributions Πn on F . And third, there is the
characterization in terms of a generalized Bayesian marginal likelihood: (19) shows that for η = 1
and ` the log loss, the information complexity ICn,η(Π

B
∣ ) is the log Bayes marginal likelihood

of the data relative to f∗, divided by n. If furthermore F is a sufficiently regular k-dimensional
parametric probability model equipped with a prior Π0 with full support on F , and the model
is correct, i.e., Z1, Z2, . . . are sampled i.i.d. from a distribution with density in F , then, as is well-
known, the information complexity will almost surely coincide, up toO(1/n), with the BIC penalty:
n ⋅ ICn,η(Π

B
∣ ) = (k/2) logn +O(1); see Grünwald (2007) for precise results.

3.3.1. BOUNDS ON INFORMATION COMPLEXITY FOR η-GENERALIZED BAYES

Ghosal et al. (2000) (GGV from now on) presented several theorems implying concentration of
the (standard) Bayesian posterior around the true distribution in the well-specified i.i.d. case; their
results were employed in many subsequent papers such as, for example, (Ghosal and Van Der Vaart,
2007; Ghosal et al., 2008; Bickel and Kleijn, 2012). We compare our results to theirs in Example 2
in Section 4. One of the conditions they impose is the existence of a sequence (εn)n≥1 such that
nε2n → ∞, and, for some constant C > 0, for all n, a certain ε2n-ball around the true distribution
has prior mass at least exp(−nCε2n). Generalizing from log loss to arbitrary loss functions, their
condition reads

Π0 (f ∶ E[Lf ] ≤ ε
2
n ; E (Lf)

2
≤ ε2n) ≥ e

−nCε2n . (21)
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They then show that, under this and further conditions, the posterior concentrates with Hellinger
rate εn (see Example 2 of Section 4 for the precise meaning). Now note that (21) implies the weaker

Π0 (f ∶ E[Lf ] ≤ ε
2
n) ≥ e

−nCε2n , (22)

which in turn implies, via (19), for any 0 < η ≤ 1, the following bound on IC for the η-generalized
Bayesian estimator:

EZn∼P [ICn,η (Π∣)] ≤ ε
2
n ⋅ (1 + (C/η)), (23)

To see this, note that (19) and (22) imply

ICn,η(Π
B
∣ )

≤ −
1

n

n

∑
i=1

`f∗(Zi) −
1

nη
log Π0{f ∶ E[Lf ] ≤ ε

2
n} +

1

n
Ef∼Π0∣{f ∶E[Lf ]≤ε2n} [

n

∑
i=1

(`f(Zi))]

≤ C
ε2n
η
+

1

n
Ef∼Π0∣{f ∶E[Lf ]≤ε2n} [

n

∑
i=1

(Lf(Zi))] . (24)

This implies (23).
All the examples of nonparametric families provided by GGV (including priors on sieves, log-

spline models and Dirichlet processes) rely on showing that condition (21) above holds for specific
priors, and hence in all these cases we get bounds on the expected-information complexity which, by
(16) allows us to establish comparable rates in expectation for the η-generalized Bayesian estimator
in the well-specified case, for any η such that the left-hand side can be linked to an actual distance
measure — see Example 2 in Section 4.

We also would like to bound the excess risk in probability in terms of the expected information
complexity. For this, we can proceed in either of two ways: we either start with an expectation
bound such as (16) and then use Markov’s inequality (since the excess risk of any estimator is a.s.
nonnegative) to go back from expectation to in-probability. However, under GGV’s condition (21)
(the weaker (22) is not sufficient here), we can also use the in-probability version of Lemma 5
directly. In combination with Lemma 8.1 of GGV (which straightforwardly extends to our setting
with general loss and η) this implies that for all δ > 0:

P (ICn,η (Π∣) ≥ (1 + δ−1/2
) ε2n) ≤

δ

nε2n
. (25)

It follows that under (21), since nε2n → ∞, ε2n is, up to constant factors depending on δ, an upper
bound both on E [ICn,η (Π∣)], and, for every δ, with probability at least 1− δ, on ICn,η (Π∣) — see
the discussion below Theorem 31 in Section 6.

Finally, there often exist nontrivial worst-case (sup norm) or almost-sure bounds on the informa-
tion complexity; such bounds — mostly developed for parametric models but also, e.g., for Gaussian
processes (Seeger et al., 2008) have historically mostly been established within the MDL literature;
see (Grünwald, 2007) for an extensive overview. While we will not go into such bounds in detail
here, below we provide a very simple such bound for countably infinite classes, which shows the
ease by which IC allows for model aggregation.

Suppose that we have a countably infinite collection of classes F1,F2, . . . and a corresponding
set of priors Π

(1)
0 ,Π

(2)
0 , . . .. Let us select a new prior q ∶ N → R+ over the collection F ∶= ⋃j∈NFj .
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Then we may define a new prior Π0 = ∑j∈N q(j)Π
(j)
0 over F . We will assume that the risk mini-

mizer in the full class, f∗, is equal to f∗j∗ for some j∗ ∈ N. By Proposition 6, Eq. (18), we must now
have, for all data Z1, . . . , Zn, that

n ⋅ ICn,η (Π∣) ≤ −
1

η
log q(j∗) + n ⋅ ICn,η(Π ∣ f ∈ Fj∗), (26)

where Π ∣ f ∈ Fj∗ is the η-generalized Bayesian estimator based on the prior Π
(j∗)
0 within Fj∗ .

If we now further assume that, for each j, the GGV-type condition (22) is satisfied (with prior
Π

(j)
0 and with f∗ replaced by f∗j , the risk minimizer over Fj), then taking expectations in (26)

implies that (22) holds for Π0, with f∗ = f∗j∗ , with the RHS scaled by a factor q(j∗). A simple
adaptation of (23) then gives

EZn∼P [ICn,η (Π∣)] ≤ ε
2
n ⋅ (1 + (C/η)) +

− log q(j∗)

nη
. (27)

Thus, the overhead in information complexity for combining the classes is simply − log q(j∗)
nη . More-

over, in the case of a finite collection of M classes, we may take q uniform and the overhead
becomes logM

nη .

4. The Strong Central Condition

As we explained below Lemma 5, our strategy in proving our theorems will be to determine con-
ditions under which the η-annealed excess risk is similar enough to either the standard risk or a
meaningful weakening thereof for Lemma 5 to be useful. In this section we present the simplest
such condition, which is still quite strong — it requires an exponentially small upper tail of the
distribution of `f∗ − `f . This strong central condition has a parameter η̄ > 0, and whenever we
want to make this explicit we refer to it as “the η̄-central condition”. Intuitively, its usefulness for
learning is obvious: it ensures that the probability that a “bad” f outperforms f∗ by more than L is
exponentially small in L. Technically, its use is that it ensures that the annealed risk is positive for
all η < η̄. This allows us to turn Lemma 5 into a useful result by replacing its left-hand side by a
metric which (for log loss) generalizes the squared Hellinger distance.

4.1. Definitions and Main Results

We now turn to the strong central condition, which, along with its weakened versions discussed in
Section 6 was introduced by Van Erven et al. (2015).

Definition 7 (Central Condition) Let η̄ > 0. We say that (P, `,F) satisfies the strong η̄-central
condition if there exists some f̃ ∈ F such that

E [e−η̄(`f−`f̃ )] ≤ 1, i.e., `f̃ − `f ⊴η̄ 0 for all f ∈ F . (28)

Jensen’s inequality implies that if a f̃ exists satisfying (28), it must be optimal; hence we can take
f̃ = f∗. The special case of this condition with η̄ = 1 under log loss has appeared previously, often
implicitly, in works studying rates of convergence in density estimation (Barron and Cover, 1991;
Li, 1999; Zhang, 2006a; Kleijn and van der Vaart, 2006; Grünwald, 2011). For details about the
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myriad of implications of the central condition and its equivalences to other conditions we refer
to Van Erven et al. (2015). Here we merely highlight the most important facts. First, trivially, the
strong central condition automatically holds for density estimation with log loss in the well-specified
setting since then pf∗ is the density of P (see Example 1), as we then have

EZ∼P [e−η̄(`f−`f∗)] = EZ∼P [
pf(Z)

pf∗(Z)
] = 1 (29)

Second, less trivially, it also automatically holds under a convex model in the misspecified setting
(see Li (1999) and Example 2.2 of Van Erven et al. (2015)). Third, for classification and other
bounded excess loss cases, it can be related to the Massart condition, a special case of the Bern-
stein condition (Audibert, 2004; Bartlett and Mendelson, 2006) (as discussed immediately before
Definition 17 in Section 5).

We now introduce a new metric which is derived from the Hellinger metric, introduced below
(as is common) in terms of its square.

Definition 8 (Misspecification Metric) For a given learning problem (P, `,F), associate each
f ∈ F and η > 0 with a probability density

pf,η(z) ∶= p(z)
exp(−ηLf(z))

E[exp(−ηLf(Z))]
, (30)

where p is the density of P . Now define dη̄(f, f ′) as the Hellinger distance between pf,η̄ and pf ′,η̄:

d2
η̄(f, f

′
) ∶=

2

η̄
(1 − ∫

√

pf,η̄(z)pf ′,η̄(z)dµ(z))

= EHE(η̄/2)
[Lf −EANN(η̄) [Lf ] +Lf ′ −EANN(η̄) [Lf ′]] . (31)

The following result is obvious:

Proposition 9 If ` is log loss and F is well-specified relative to P we can take η̄ = 1 and then
for every f ∈ F , d2

η̄(f
∗, f) coincides with the standard squared Hellinger distance H1/2(Pf∗∥Pf)

defined by H1/2(Pf∥Pf ′) ∶= 2 (1 − ∫
√
pf(z)pf ′(z)dµ(z)) .

Since dη̄ is always interpretable as a Hellinger distance, it is clearly a metric. This is different
from an existing, more well-known generalization of the Hellinger distance for the well-specified
case (Sason and Verdú, 2016), Hη(P ∥Q) ∶= η−1 (1 −EZ∼P (q(z)/p(z))η) which does not define a
metric except for η = 1/2 (and then coincides with d1). The dη̄ metric is of interest in the misspec-
ified density estimation setting — with density estimation, we may not necessarily be interested in
log loss prediction and a metric weaker than excess risk (i.e. generalized KL divergence) may be
sufficient for our purposes. With other loss functions, the main interest will usually be learning an f̂
with small prediction error. Then the metric above, while still well-defined, may not be appropriate,
and one is interested in the excess risk bounds of the next section instead.

Theorem 10 Suppose that the η̄-strong central condition holds. Then for any 0 < η < η̄, the metric
dη̄ satisfies

Ef∼Πn [d2
η̄(f

∗, f)] ⊴η⋅n Cη ⋅ ICn,η (Π∣) ,

with Cη = η/(η̄ − η). In particular, Cη < ∞ for 0 < η < η̄, and Cη = 1 for η = η̄/2.
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Example 2 (Comparison to results by GGV) Following (Zhang, 2006a) we illustrate the consid-
erable leverage provided in the well-specified density estimation case by allowing η-generalized
Bayesian estimators for η < 1. GGV show that for the standard Bayesian estimator, under condition
(21) (which only refers to local properties of the prior in neighborhoods of the true density pf∗),
in combination with a rather stringent global entropy condition, the following holds: there exists a
constant C ′ such that Πn (f ∈ F ∶ d2

1(f
∗, f) > C ′ε2n) → 0 in P -probability, i.e., for every B > 0,

P (Πn (f ∈ F ∶ d2
1(f

∗, f) > C ′ε2n) > B) → 0.

Now, suppose the model is correct so that the η̄-central condition holds for η̄ = 1. Then we get from
Theorem 10 that for any η < η̄, using only condition (22), the following holds: for any γ1, γ2, . . .
such that γn/εn →∞, the generalized Bayesian estimator satisfies Πn (f ∈ F ∶ d2

1(f
∗, f) > C ′γ2

n) →

0 in P -probability, i.e., for every B > 0,

P (Πn (f ∈ F ∶ d2
1(f

∗, f) > C ′γ2
n) > B) → 0, (32)

as immediately follows from applying Markov’s inequality twice as done below. Thus, by taking
η < 1 we need neither the stronger condition (21) nor the much stronger GGV global entropy
condition; for this we pay only a slight price since our bound is not in terms of ε2n but is instead in
terms of γ2

n, which we have to take slightly larger (a factor log logn is of course sufficient). Under
well-specification, we thus obtain the same rates as GGV for all the statistical models they consider,
up to a log logn factor; as GGV show, these rates are usually minimax optimal. Interestingly, other
works on Bayesian and MDL nonparametric consistency for the well-specified case also consider
η < 1 (Barron and Cover, 1991; Zhang, 2006a; Walker and Hjort, 2002; Martin et al., 2017) or invoke
an alternative stringent condition to deal with η = 1 ((Zhang, 2006a, Section 5.2), Barron et al.
(1999)); see Zhang (2006a) for a very detailed discussion. While it may be argued that one should
be able to deal with standard Bayes (η = 1), in this paper we also aim to deal with misspecification
where we need to take η < 1 (and cannot take it arbitrarily close to 1) even for simple problems
(Grünwald and Van Ommen, 2017), and then there is no special reason to handle η = 1 via additional
conditions.

To show (32), note that, if the η̄-central condition holds, then for general A,B > 0, we have

P (Πn(f ∈ F ∶ d2
η̄(f

∗, f) > A) > B) ≤ B−1 EZn [Πn(f ∈ F ∶ d2
η̄(f

∗, f) > A)]

≤ (AB)
−1 EZn Ef∼Πn [d2

η̄(f
∗, f)] ≤ (AB)

−1 EZn [ICn,η̄/2 (Π∣)] ,

where we applied Markov’s inequality twice, and the final inequality is from Theorem 10. Plugging
in A = C ′γ2

n and ε2n ≥ E [ICn,η̄/2 (Π∣)] (using (23)), this can be further bounded as B−1ε2n/γ
2
n → 0.

◻

4.2. Applying Theorem 10 in Misspecified Density Estimation

From the above it is clear that Theorem 10 has plenty of applications whenever the model under
consideration is correct. We now consider applications of Theorem 10 to misspecified models of
probability densitiesF with generalized Bayesian estimators ΠB

∣ . For this we must establish (a) that
the central condition holds for F , and (b) suitable bounds on the information complexity relative to
ΠB

∣ . As to (a), we know that the η̄-central condition holds for η̄ = 1 whenever the set of distributions
{pf ∶ f ∈ F} is correct or convex; as shown elsewhere and illustrated in Example 3 below, it also
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holds for 1-dimensional (nonconvex) exponential families and high-dimensional generalized linear
models (GLMs) under potentially severe misspecification of the noise, as long as the regression
function is well-specified and P has exponentially small tails. As to (b), we may consider priors
such that in the well-specified case, the GGV condition holds for some sequence ε21, ε

2
2, . . . as in

Example 2. As explained in the example, the GGV condition then automatically holds for GLMs
under misspecification as well, so that the same bounds on information complexity can be given as
in the well-specified case. It appears that this is a special property of GLMs though — for general
F , we only have the following proposition which shows that, if the GGV condition holds for some
specific prior in the well-specified case with some bounds ε1, ε2, . . ., then, as long as pf∗ dominates
p, it must still hold in the misspecified case for the same prior for a strictly larger sequence ε′1, ε

′
2, . . .,

leading to a potential deterioration of the bound given by Theorem 10.

Proposition 11 Consider a learning problem (P, `,F) where F indexes a set of probability dis-
tributions {Pf ∶ f ∈ F} with densities pf , and suppose that supz∈Z

dP (z)
dPf∗(z)

= C < ∞. Then for all
f ∈ F ,

EZ∼P [Lf ] ≤ C ⋅ (EZ∼Pf∗ [Lf ] +
√

2EZ∼Pf∗ [Lf ]) . (33)

Proof Observe that

EZ∼P [Lf ] ≤ EZ∼P [0∨Lf ] ≤ CEZ∼Pf∗ [0∨Lf ] ≤ C ⋅ (D(f∗∥f) +
√

2D(f∗∥f)) ,

where EZ∼Pf∗ [Lf ] = D(f∗∥f) is the KL divergence between f∗ and f and the last inequality is
from Yang and Barron (1998) (see the remark under their Lemma 3); for completeness we provide
a proof in the appendix.

As a trivial consequence, whenever the weakened GGV condition (22) holds for all Pf with f ∈ F

for a sequence ε1, ε2, . . ., it will still hold for a sequence ε′1, ε
′
2, . . . with ε′j ≍

√
εj . It follows from

(23) that we now automatically have a bound of order ε′n/n on the misspecified expected infor-
mation complexity. Theorem 10 now establishes that whenever the GGV condition holds in the
well-specified case, under the further (weak) condition that supz∈Z dP (z)/dPf∗(z) = C < ∞, we
automatically get a form of consistency for η-generalized Bayes, for η < η̄. The question whether
we get the same rates of convergence is obfuscated in two ways: first, the misspecification metric is
in general incomparable to the Hellinger metric; second, even in cases in which the misspecification
metric dominates the standard Hellinger, for nonparametric F with E[ICn,η] ≍ n

−γ , the conversion
ε′j ≍

√
εj worsens the rates obtained by Theorem 10 to n−γ/2. To deal with the first problem, one

could establish a condition under which the misspecification metric dominates standard Hellinger;
but this is tricky and will be left for future work. The second problem is still of interest in the next
section, in which the misspecification metric is replaced by the excess risk, which has the same
meaning irrespective of whether F is well-specified. As indicated below, for generalized linear
models we can get rid of the square root in (33), but whether this can be done more generally also
remains an important open problem for future work. An alternative, also to be considered for future
work, is to refrain from using the priors constructed for the well-specified case altogether and in-
stead directly design priors for the misspecified case, with hopefully better bounds on information
complexity.

Example 3 (Exponential Families and Generalized Linear Models) Consider a learning prob-
lem (P, `,F) in the conditional density estimation setting of Example 1, so that ` is the conditional
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log-loss; Z = (X,Y ) with X taking values in X ⊂ Rk; and {pf ∶ f ∈ F} for some F ⊂ Rk
represents a k-dimensional generalized linear model (GLM), given in its standard parameterization
(so that ⟨x, f⟩ is the linear predictor fed into the link function) (McCullagh and Nelder, 1989).
Heide et al. (2019, Theorem 2) show2 that, under three further conditions on (P, `,F), the central
condition holds for some η̄ > 0, even under misspecification. In essence, the conditions require
(1) that Y has exponential tails, in the sense that supx∈X E[exp(η∣Y ∣) ∣ X = x] < ∞ for some
η > 0 (a requirement that is automatically satisfied for, e.g., logistic regression, for which Y is
finite); (b) that F is restricted to a compact (though possibly very high dimensional) set, and (c),
that the misspecification is of a certain type: the noise may be misspecified in arbitrary ways, but
the GLM should contain the distribution with the correct generalized regression function. That
is, there should be an f ∈ F indexing distribution Pf with the correct conditional mean, so that
EPf [Y ∣ X] = EP [Y ∣ X]. This f will then in fact be equal to the risk-optimal f∗. By taking X to
be a singleton, a GLM becomes a 1-dimensional natural exponential family, and the result thus also
applies to such families. For this simplified case, Heide et al. (2019) show that the smallest η̄ for
which the η̄-central condition holds is upper bounded by, and in some cases not much smaller than,
the ratio of variances EPf∗ [(Y −EPf∗ [Y ])2]/EP [(Y −EP [Y ])2].

Heide et al. (2019, Proposition 2) shows that, if F represents a GLM, then under the same
three conditions, we have EZ∼P [Lf ] = EZ∼Pf∗ [Lf ], so that there is no need to resort to Propo-
sition 11. This implies that for any prior satisfying the GGV condition in the well-specified case,
the same prior can be used in the misspecified case and, using Theorem 10, we can prove the same
risk bounds, up to a constant factor, as in the well-specified case for generalized Bayes with any
fixed η < η̄. In particular, k-dimensional GLMs being sufficently general parametric models, we
can use any continuous prior on F that is bounded away from 0 and obtain that, for any fixed η,
n ⋅ ICn,η(Π

B
∣ ) ≤ (k/2η) logn +O(1), cf. the remark after Proposition 6. Theorem 10 then gives a

bound of Õ(k/n), which is within a log factor of the minimax optimal parametric rate O(k/n) for
squared Hellinger distance in the well-specified case. ◻

Example 4 (Comparison to Bhattacharya et al. (2019)) After submitting the present paper, we
became aware of (Bhattacharya et al., 2019). The analysis and results of that paper (first submitted
to arXiv in 2016, around the same time as the present paper) overlap with our Theorem 10, and
some of their examples have implications for our work as well. Bhattacharya et al. (2019) focus
exclusively on generalized Bayesian estimators ΠB

∣ . Their Theorem 3.6 is a variation of Zhang’s
Lemma 5, extended to handle non-i.i.d. P . Their α-Rényi divergence is just our η-annealed excess
risk, with η = 1 − α. For F satisfying the η̄-central condition, they provide Theorem 3.1, which has
some similarity to Theorem 10: their result extends ours in that it allows non-i.i.d. P ; it rephrases
ours so that the result is directly stated in terms of GGV-style conditions on Π0 rather than on
bounds on ICn,η(Π

B
∣ ), similar to our (32); and it stays closer to Lemma 5 in that it keeps the

annealed excess risk on the left (a nonsymmetric divergence) where Theorem 10 has a (symmetric)
metric. In their Lemma 2.1. they re-prove the result of Li (1999) and Van Erven et al. (2015) that
1-strong central holds for convex probability models. Also, they provide (Section 5.1) an interesting
novel example in which the strong 1-central condition holds: Gaussian regression, with probability
densities pf(y ∣ x) ∝ exp(−(y − f(x))2/2σ2) with fixed variance σ2, where the true noise is

2. In previous arXiv versions of this paper, we gave these results in full detail, adding 7 pages to its length. Following
referee’s comments and consultation with the associate editor, we moved them to the paper (Heide et al., 2019),
where they are further illustrated by means of actual experiments with misspecified GLMs.
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Gaussian and the set of regression functions F is convex (but the corresponding density functions
{pf ∶ f ∈ F} are not, so Li’s result does not apply). The model is misspecified in that F does not
contain the true regression function; in contrast, in Example 3 above we considered the reverse case
in which the noise is misspecified yet the regression function is not. They show that in their setting,
bounds on the annealed excess risk imply bounds on the L2(P )-parameter estimation error that
we consider in Example 9. They do not consider the non-annealed excess risk bounds and weaker
forms of the central condition that we will turn to in the following sections. ◻

5. The Witness Condition

We have seen via Theorem 10 that under the η̄-central condition, Lemma 5 provides a bound on a
weak Hellinger-type metric. For problems different from density estimation, i.e., loss functions
different from log loss, we often mainly are interested in a bound on the excess risk. To get
such bounds, we need a second condition on top of the η̄-central condition. To see why, con-
sider again the density estimation example (Example 1). If we assume a correct model, p = pf∗ ,
then from (29) the η̄-central condition holds automatically for all η̄ ≤ 1, and so Theorem 10 gives
a bound on the Hellinger distance. Yet, while the Hellinger distance is bounded, in general we
can have KL(p ∥pf) = ∞. If, for example, F is the set of densities for the Bernoulli model, P is
Bernoulli(1/2), and we use ERM for log loss (so that f̂ is the maximum likelihood estimator for
the Bernoulli model), we observe with positive probability only 0’s. In this case, we will infer f̂
with pf̂(Y = 0) = 1, and thus with positive probability the excess risk between f̂ and f∗ is ∞ even
though the expected Hellinger distance is of order O(1/n). We thus need an extra condition.

For log loss, the simplest such condition is that the likelihood ratio of pf∗ to pf is uniformly
bounded for all f ∈ F . For that case, Birgé and Massart (1998) proved a tight bound on the ratio be-
tween the standard KL divergence and the standard (η = 1/2) Hellinger distance. Lemma 13 below
represents a generalization of their result to arbitrary η, misspecified F , and general loss functions
under the witness condition which we introduce below, and which is a significant weakening of the
bounded likelihood ratio condition. It is the cornerstone for proving our subsequent results: The-
orems 14, 22, 29, and 31. Whereas the strong central condition imposes exponential decay of the
lower tail of the excess loss `f − `f∗ , the witness condition imposes a much weaker type of control
on the upper tail of `f − `f∗ .

Below, we show that the witness condition generalizes not only conditions of Birgé and Massart
(1998) but also of Sason and Verdú (2016) and Wong and Shen (1995) (Example 6). We also
show that it holds in a variety of settings, e.g., with exponential families with suitably restricted
parameter spaces in the well-specified setting and when the log likelihood has exponentially small
tails (Example 5), but also with bounded regression under heavy-tailed distributions (Example 7).
Moreover, although the conditions are not equivalent, there is an intriguing similarity to the recent
small-ball assumption of Mendelson (2014) (Example 9).

5.1. Definition and Main Result

Definition 12 (Empirical Witness of Badness) We say that (P, `,F) satisfies the (u, c)-empirical
witness of badness condition (or witness condition) for constants u > 0 and c ∈ (0,1] if for all f ∈ F

E [(`f − `f∗) ⋅ 1{`f−`f∗≤u}] ≥ cE[`f − `f∗]. (34)
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More generally, for a function τ ∶ R+ → [1,∞) and constant c ∈ (0,1) we say that (P, `,F) satisfies
the (τ, c)-witness condition if for all f ∈ F , E[`f − `f∗] < ∞ and

E [(`f − `f∗) ⋅ 1{`f−`f∗≤τ(E[`f−`f∗ ])}] ≥ cE[`f − `f∗]. (35)

The (u, c)-witness condition (34) is just the (τ, c)-witness condition for the constant function τ
identically equal to u. In our results we frequently use that, by adding E [(`f − `f∗) ⋅ 1{`f−`f∗>u}]

to both sides of (34) and rearranging, the (u, c)-witness condition holds if and only if for c′ = 1 − c
(and hence c′ ∈ (0,1)),

E [(`f − `f∗) ⋅ 1{`f−`f∗>u}] ≤ c
′E[`f − `f∗], (36)

and similarly for the τ -version.
The intuitive reason for imposing this condition is to rule out situations in which learnability

simply cannot hold. For instance, consider a setting with F = {f∗, f1, f2, . . .} where `f∗ = 1 with
probability 1 and, for each j ≥ 1, `fj is equal to 0 with probability 1 − 1

j and equal to 2j with
probability 1

j . Then for all j, E[`fj − `f∗] = 1, but as j →∞, empirically we will never witness the
badness of fj as it almost surely achieves lower loss than f∗. On the other hand, if the excess loss is
upper bounded by some constant b, we may always take u = b and c = 1 so that a witness condition
is trivially satisfied. Below we provide several nontrivial examples besides bounded excess losses
and finite F in which the witness condition holds.

The following result shows how the witness condition, combined with the strong central condi-
tion, leads to fast-rate excess risk bounds:

Lemma 13 Let η̄ > 0. Assume that the η̄-strong central condition (28) holds and let, for arbitrary
0 < η < η̄, cu ∶= 1

c
ηu+1
1− η

η̄

. Suppose further that the (u, c)-witness condition holds for u > 0 and

c ∈ (0,1]. Then for all f ∈ F , all η ∈ (0, η̄):

E[Lf ] ≤ cu ⋅E
HE(η) [Lf ] ≤ cu ⋅E

ANN(η) [Lf ] . (37)

More generally, suppose that the η̄-central condition and the (τ, c)-witness condition hold for c ∈
(0,1] and a non-increasing function τ . Then for all λ > 0, all f ∈ F ,

E[Lf ] ≤ λ∨(cτ(λ) ⋅E
HE(η) [Lf ]) ≤ λ∨(cτ(λ) ⋅E

ANN(η) [Lf ]) . (38)

Note that for large u, cu is approximately linear in u/c.
The following theorem is now an almost immediate corollary of Lemma 5 and Lemma 13:

Theorem 14 Consider a learning problem (P, `,F) and a learning algorithm Π∣. Suppose that
the η̄-strong central condition holds. If the (u, c)-witness condition holds, then for any η ∈ (0, η̄),

Ef∼Πn [E[Lf ]] ⊴ η⋅n
cu

cu ⋅ ICn,η (Π∣) ,

with cu as in Lemma 13. If instead the (τ, c)-witness condition holds for some non-increasing
function τ as above, then for any λ > 0

Ef∼Πn [E[Lf ]] ⊴ η⋅n
cτ(λ)

λ + cτ(λ) ⋅ ICn,η (Π∣) . (39)
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Proof The first and second inequalities are from chaining Lemma 5 with Lemma 13 ((37) and (38)
respectively). The first inequality is immediate using that for general random variables U,V , we
have U ⊴a V ⇔ cU ⊴a/c cV . For the second inequality, we first upper bound the max on the RHS
of (38) by the sum of the terms.

This theorem is applicable if the (τ, c)-witness condition holds for a non-increasing τ . If the risk
supf∈F E[Lf ] is unbounded, we can only expect the witness condition to hold for τ such that
for large x, τ(x) is increasing; such τ are considered in Section 6.3. Non-increasing τ are often
appropriate for scenarios with bounded risk (even though the loss may be unbounded and even
heavy-tailed); we encounter one instance thereof in the exponential family example below. There,
limx↓0 τ(x) = ∞, but the increase as x ↓ 0 is so slow that the optimal λ at sample size n is of order
O(1/n) and cτ(δ) = O(logn), leading only to an additional log factor in the bound compared to the
case where the (u, c)-witness condition holds for constant u.

Some Existing Bounds Generalized by Lemma 13 Lemma 13 generalizes a result of Birgé and
Massart (1998, Lemma 5) (also stated and proved in Yang and Barron (1998, Lemma 4)) that bounds
the ratio between the standard KL divergence KL(P ∥Q) and the (standard) 1/2-squared Hellinger
distance H1/2(P ∥Q) for distributions P andQ. To see this, take density estimation under log loss in
the well-specified setting with η < η̄ = 1, so that f∗ = p and f = q; then the left-hand side becomes
KL(P ∥Q) and the right-hand side 1

η E[1−e−ηLf ] = 1
η (1 −E[(q/p)η]) = Hη(P ∥Q) (this notation

was introduced below Proposition 9). Under a bounded density ratio p/q ≤ V , we can take u = logV
and c = 1 (the (u, c)-witness condition is then trivially satisfied), so that cu =

η logV +1
1−η , which for

η = 1/2 coincides with the Birgé-Massart bound. The case of general η ∈ (0,1) first was handled
by Haussler and Opper (1997) (see Lemma 4 therein), but their bound stops short of providing an
explicit upper bound for the ratio.

Sason and Verdú (2016) independently obtained an upper bound (see Theorem 9 therein) on
the ratio of the standard KL divergence KL(P ∥Q) to the η-generalized Hellinger divergence in
the case of bounded density ratio ess sup dP

dQ , for general η. Theorem 13 generalizes Theorem 9
of Sason and Verdú (2016) by allowing for misspecification in the case of density estimation with
log loss, allowing for general losses, and, critically for our applications, allowing for unbounded
density ratios under a witness condition. We note that in the case of bounded density ratio dP

dQ and
the regime η ∈ (0,1) (corresponding to α = 1−η ∈ (0,1) in Theorem 9 of Sason and Verdú (2016)),
their bound and the unsimplified form of our bound (see C0←η(V ) in Lemma 36 in Appendix C) are
identical, as they should be since both bounds are tight. The additional, slightly looser simplified
bound that we provide greatly helps to simplify the treatment for unbounded excess losses under
the witness condition. We stress though that Sason and Verdú (2016) treat general F -divergences
under well-specification, including a wide array of divergences beyond η-generalized Hellinger for
η ∈ (0,1), so in that respect, their bounds are far more general. In the next section we establish that
Lemma 13 also generalizes a bound by Wong and Shen (1995).

5.2. Example Situations in which the Witness Condition Holds

We now present some examples of common learning problems in which the (τ, c)-witness condi-
tion holds for a suitable τ . We first consider a case where the distribution of the excess loss has
exponentially decaying tails in both directions. The (u, c)-witness condition (34) does not always
hold for such excess losses, but we now show that the τ -witness condition is always guaranteed to
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hold in such cases for a non-increasing function τ , which leads to a bound on excess risk that is only
a log factor worse than the direct bound on the annealed risk of Lemma 5.

Definition 15 Suppose that for given (P, `,F) and a collection of random variables {Uf ∶ f ∈ F},
there is a 0 < κ < ∞ such that supf∈F E [eκUf ] < ∞. Then we say that Uf has a uniformly
exponential upper tail.

The name reflects that Uf has uniformly exponential upper tails if and only if there are constants
c1, c2 > 0 such that for all u > 0, f ∈ F , P (Uf ≥ u) ≤ c1e

−c2u, as is easily shown (we omit the
details).

Lemma 16 Define Mκ ∶= supf∈F E [eκLf ] and assume that Lf has a uniformly exponential upper
tail, so that Mκ < ∞. Then, for the map τ ∶ x ↦ 1∨κ−1log 2Mκ

κx = O(1∨ log(1/x)), the (τ, c)-
witness condition holds with c = 1/2.

Now let η̄ > 0. Assume both the η̄-strong central condition, i.e., E [e−η̄Lf ] ≤ 1, and that Lf has a
uniformly exponential upper tail. As an immediate consequence of the lemma above, Theorem 14
now gives that for any learning algorithm Π∣ for any η ∈ (0, η̄), (using λ = 1/n), there is Cη < ∞
such that

Ef∼Πn [E[Lf ]] ⊴ η⋅n
Cη logn

1

n
+Cη ⋅ (logn)ICn,η (Π∣) , (40)

so we obtain an excess risk bound that is only a log factor worse than the bound that can be obtained
for the generalized Hellinger metric in Theorem 14.

Example 5 (Generalized Linear Models and Witness) Consider again Example 3, about GLMs.
Heide et al. (2019, Appendix B) show that, under the three assumptions that we informally listed
in Example 3, the conditions of Lemma 16 are satisfied. We can thus use (40) to give us that, up
to log-factors, for misspecified GLMs satisfying the three conditions mentioned in Example 3 and
generalized Bayesian estimators based on priors that are continuous and bounded away from 0 on
F , we can prove a rate of order Õ(d/n), which, up to log factors, is equal to the minimax parametric
rate. ◻

As a second consequence of Lemma 16, this time combined with (38) from Lemma 13 with
λ = EHE(η) [Lf ], we find that under the conditions of Lemma 16, there is Cη < ∞ such that

E[Lf ] ≤ max

⎧⎪⎪
⎨
⎪⎪⎩

EHE(η) [Lf ] ,Cη ⋅E
HE(η) [Lf ] ⋅ log

1

EHE(η) [Lf ]

⎫⎪⎪
⎬
⎪⎪⎭

. (41)

The above result generalizes a bound due to Wong and Shen (1995), as we now show.

Example 6 The bound (41) generalizes a bound of Wong and Shen (1995). Their result, the first
part of their Theorem 5, allows one to bound KL divergence in terms of Hellinger distance, i.e., it
holds in the special case of well-specified density estimation under log loss with the choice η̄ = 1,
η = 1/2. Formally, consider probability model {Pf ∣ f ∈ F} where each Pf has density pf , and as-
sume the model is well-specified in that Z ∼ P = Pf∗ with f∗ ∈ F . Wong and Shen (1995) consider
the condition that for some 0 < κ < 1, it holds that M ′

κ ∶= supf∈F ∫(pf /pf∗)≥e1/κ pf
∗(pf∗/pf)

κ < ∞.
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They show that, under this condition, the following holds for all f ∈ F in the regime H1/2(Pf∗ ∥Pf) =

EHE(η) [Lf ] ≤
1
2
(1 − e−1)

2
:

E[Lf ] ≤
⎛

⎝
6 +

2 log 2

(1 − e−1)2
+

4

κ
max

⎧⎪⎪
⎨
⎪⎪⎩

2, log
M ′
κ

EHE(η) [Lf ]

⎫⎪⎪
⎬
⎪⎪⎭

⎞

⎠
EHE(η) [Lf ] , (42)

where `f = − log pf is log loss. Now, note that for this loss function and in the case η̄ = 1 (where
their result applies too), Mκ in Lemma 16 and M ′

κ in (42) satisfy M ′
κ ≤Mκ ≤M

′
κ + e. Comparing

(42) to (41), we see that up to values of the constants, our result generalizes Wong and Shen’s. ◻

We just showed that a τ -witness condition always holds under exponential tails of the loss. The
following example shows that even if the loss random variables `f have fat (polynomial) tails, the
witness condition often holds, even for constant τ . Before providing the example, we first recall the
Bernstein condition (Audibert, 2004; Bartlett and Mendelson, 2006) and a useful proposition that
will be leveraged in the example.

Definition 17 (Bernstein Condition) For some B > 0 and β ∈ (0,1], we say (P, `,F) satisfies the
(β,B)-Bernstein condition if, for all f ∈ F , E[L2

f ] ≤ B (E[Lf ])
β

.

The best case of the Bernstein condition is when the exponent β is equal to 1. In past works,
the Bernstein condition has mostly been used to characterize fast rates in the bounded excess loss
regime, where the (u, c)-witness condition holds automatically. In that regime, the Bernstein con-
dition for β = 1 and the central condition become equivalent (i.e. for each (β,C) pair there is some
η̄ and vice versa, where the relationship depends only on the upper bound on the loss; see Theo-
rem 5.4 of Van Erven et al. (2015)). The following proposition shows that with unbounded excess
losses, the Bernstein condition can also be related to the witness condition:

Proposition 18 (Bernstein implies Witness) If (P, `,F) satisfies the (β,B)-Bernstein condition,
then, for any u > B, (P, `,F) satisfies the (τ, c)-witness condition with τ(x) = u ⋅ (1/x)1−β and
c = 1− B

u . In particular, if β = 1 then (P, `,F) satisfies the (u, c)-witness condition with constant u.

The special case of this result for β = 1 will be put to use in Example 11 in Section 6.

Example 7 (Heavy-tailed regression with convex luckiness and bounded predictions) Consider
a regression problem with squared loss, so that Z = X × Y . Further assume that the risk minimizer
f∗ over F continues to be a minimizer when taking the minimum risk over the convex hull of F .
We call this assumption convex luckiness for squared loss. It is implied, for example, when F is
convex or when the model is well-specified in the sense that Y = f∗(X) + ξ for ξ a zero-mean
random variable that is independent of X . Thus, when F is convex, we can enforce it; if we are not
willing to work with a convex F (for example, because this would blow up the COMPn in (4)), then
we are “lucky” if it holds — since it allows, in general, for better rates (see Section 7 for additional
discussion).

Now assume further that E[Y 2 ∣ X] ≤ C a.s. and the function class F consists of functions f
for which the predictions f(X) are bounded as ∣f(X)∣ ≤ r almost surely. Proposition 19 shows that
in this setup, the Bernstein condition holds with exponent 1 and multiplicative constant 8(

√
C+r)2.

Proposition 18 then implies that the (u, c)-witness condition holds with u = 16(
√
C+r)2 and c = 1

2 .
◻
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Proposition 19 Under the assumptions of the example above, the (1,8(
√
C + r)2)-Bernstein con-

dition holds.

We note that Theorem 14 cannot be used with squared loss when Y is heavy-tailed as then the strong
central condition cannot hold. Thus, while Example 7 might imply in this case that a (u, c)-witness
condition holds, we do not yet have the machinery to put this fact to use. However, in Example 11,
we show that weaker easiness conditions can still hold and fast rates can still be obtained.

Example 8 (Example 7 and Lemma 13 in light of Birgé (2004)) Proposition 1 of Birgé (2004)
shows that, in the case of well-specified bounded regression with Gaussian noise ξ, the excess risk
is bounded by the 1/2-annealed excess risk times a constant proportional to r2, where r is the bound
on ∣f(X)∣ as in Example 7. This result thus gives an analogue of Lemma 13 for bounded regression
with Gaussian noise and also allows us to apply one of our main results, Theorem 29 below (excess
risk bounds with heavy-tailed losses), for this model. Our earlier Example 7 extends Birgé’s result,
since it shows that the excess risk can be bounded by a constant times the annealed excess risk if
the target Y has an almost surely uniformly bounded conditional second moment, which, in the
well-specified setting in particular, specializes to ξ ∣ X almost surely having (uniformly) bounded
second moment (and thus potentially having quite heavy tails) rather than Gaussian tails. On the
other hand, (Birgé, 2004, Section 2.2) also gives a negative result for sets F that are not bounded
(i.e. supx∈X ,f∈F ∣f(x)∣ = ∞): even in the “nice” case of Gaussian regression, there exist such sets for
which the ratio between excess risk and annealed excess risk can be arbitrarily large, i.e., there exists
no finite constant cu for which (37) holds for all f ∈ F . From this we infer, by using Lemma 13 in
the contrapositive direction, that for such F the witness condition also does not hold. ◻

Example 9 (witness vs. the small-ball assumption) Intriguingly, on an intuitive level the witness
condition bears some similarity to the small-ball assumption of Mendelson (2014). This assumption
states that there exist constants κ > 0 and ε ∈ (0,1) such that, for all f, h ∈ F , we have

Pr (∣f − h∣ ≥ κ∥f − h∥L2(P )) ≥ ε. (43)

Under this assumption, Mendelson (2014) established bounds on the L2(P )-parameter estimation
error ∥f̂−f∗∥L2(P ) in function learning. For the special case that h = f∗, one can read the small-ball
assumption as saying that “no f behaving very similarly to f∗ with high probability is very different
from f∗ only with very small probability so that it is still quite different on average.” The witness
condition reads as “there should be no f that is no worse than f∗ with high probability and yet
with very small probability is much worse than f∗, so that on average it is still substantially worse”.
Despite this similarity, the details are quite different. In order to compare the approaches, we may
consider regression with squared loss in the well-specified setting as in the example above. Then the
L2(P )-estimation error becomes equivalent to the excess risk, so both Mendelson’s and our results
below bound the same quantity. But in that setting one can easily construct an example where the
witness and strong central conditions hold (so Theorem 14 applies) yet the small-ball assumption
does not (Example 16 in Appendix I); but it is also straightforward to construct examples of the
opposite by noting that small-ball assumption does not refer to Y whereas the witness condition
does. In Section 6.3 we will see that, nevertheless, the small-ball assumption can be related to the
τ -witness condition for a particular τ that is needed in the unbounded risk scenario (Theorem 31).
◻
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6. Bounds under Weaker Easiness Conditions

In many learning problems, there is no η > 0 such that the strong η-central condition is satisfied.
Yet, it turns out that in many cases of interest there still exist weaker conditions under which fast
convergence rates are possible. We consider two types of conditions. Both are best understood
by generalizing the notion of excess risk: whereas hitherto, this was invariably defined as the risk
(expected loss of some learner Π∣) relative to the comparator f∗ that was optimal within F , we
will now also allow more general comparators that lie outside F . In particular we will consider
as comparator a pseudo-predictor g with risk E[`g] = E[`f∗] − ε for some small ε > 0. Being
better than f∗, g does not correspond to an action that can be actually played, but one can often
find a g such that, with f∗ replaced by g, the η-central condition does hold for some η > 0 while,
simultaneously, ε is so small that an excess risk bound relative to g implies also a good excess risk
bound relative to the original comparator f∗. We will soon introduce a function v that modulates
how large one can take η for a desired ε (the larger η, the better the bounds that ensue).

In order to work with comparators that are pseudo-predictors, we now introduce F̄ , an enlarged
action space that is a superset of F and that also contains the pseudo-predictors we use in the
remainder of this work. These pseudo-predictors always will be deterministic and typically will be
constant-shifted versions of `f (for some f ∈ F) or versions of a GRIP (introduced in Definition 23).
Although a given pseudo-predictor f ∈ F̄ can fail to be well-defined as a playable action, the loss
`f of any pseudo-action we employ will always be well-defined. We thus extend our loss notation
`f(z) to all f ∈ F̄ .

We first consider the v-central condition, a strict weakening of the strong central condition
which applies if the excess loss is bounded or has exponential tails; here the comparator can be taken
to be a trivial modification of f∗. We next consider the v-PPC condition, a strict weakening of the
v-central condition, which applies if the losses have polynomial tails. It is based on using a new type
of comparator, the generalized reversed information projection (GRIP), which generalizes a concept
from Barron and Li (1999). In Section 6.1 we present the v-central condition and a corresponding
excess risk bound for bounded excess risks. Section 6.2 presents the v-PPC condition, the GRIP,
and the corresponding excess risk bound for bounded excess risks. Finally, Section 6.3 shows risk
bounds under the v-PPC and v-central conditions for unbounded excess risks.

6.1. The v-Central Condition

Definition 20 (v-Central Condition (Van Erven et al., 2015)) Let η > 0 and ε ≥ 0. We say that
(P, `,F) satisfies the η-central condition up to ε if there exists some f̃ ∈ F such that

`f̃ − `f ⊴η ε for all f ∈ F . (44)

Let v ∶ [0,∞) → [0,∞) be a bounded, non-decreasing function satisfying v(ε) > 0 for all ε > 0. We
say that (P, `,F) satisfies the v-central condition if, for all ε ≥ 0, there exists a function f̃ ∈ F such
that (44) is satisfied with η = v(ε).

The special case with constant v(ε) ≡ η̄ reduces to the earlier strong η̄-central condition (and then f̃
must be optimal so we can take f̃ = f∗); for nonconstant v, the condition is weaker in that it allows
a little slack ε, and to make ε small, we need to take η small. For each ε ≥ 0, we now define f∗ε in
terms of its loss by ∀z ∈ Z ∶ `f∗ε (z) ∶= `f∗(z) − ε. This f∗ε plays the role of alternative comparator
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referred to above. We can now apply Lemma 5 with f∗ε instead of f∗ to get a bound on the annealed
excess risk:

Ef∼Πn [EANN(η) [`f − `f∗ε ]] ⊴η⋅n ICn,η(Π∣) + ε. (45)

Analogous to the story in Section 5.1, we want to turn this bound into an actual excess risk bound.
This is done by the following lemma, which is a straightforward consequence from the first part of
Lemma 13 and only differs from it in that it has `f∗ on the right-hand side replaced by `f∗ε and a
slightly larger constant factor.

Lemma 21 Let (P, `,F) be a learning problem that satisfies the v-central condition for some v.
Let f ∈ F . Suppose that (34) holds for some u > 0 and c ∈ (0,1], i.e., (P, `,{f, f∗}) satisfies the
(u, c)-witness condition. Fix ε ≥ 0 and let η̄ = v(ε). As in Lemma 13, let cu = 1

c
ηu+1
1− η

η̄

. Then for all

η ∈ (0, η̄),

E[Lf ] ≤ cu+ε ⋅E
ANN(η) [`f − `f∗ε ] . (46)

In particular, if (P, `,F) satisfies the (u, c)-witness condition then (46) holds for all f ∈ F .

The key to the proof is that, if (P, `,F) satisfies the v-central condition, then we have that

(P, `,F ∪ {f∗ε }) satisfies the η-central condition with η = v(ε). (47)

We now show how Lemma 21 straightforwardly implies a strict strengthening of Theorem 14, one
which holds under the v-central condition rather than just the η̄-central condition: since (46) holds
for all f ∈ F , it also holds in expectation over f , under any arbitrary distribution Π over f . We
can thus take expectations over Πn on both sides of (46) and chain the resulting inequality with ESI
(45). Using that for general random variables U,V and c > 0, U ⊴a V ⇔ cU ⊴u/c cV , this gives:

Theorem 22 (v-Central Excess Risk Bound - Bounded Excess Risk Case) Let Π∣ be an arbi-
trary learning algorithm based on F . Assume that (P, `,F) satisfies the (u, c)-witness condition
(34) and let cu be defined as in Lemma 21. Then under the v-central condition, for any ε ≥ 0, any
0 < η < v(ε):

Ef∼Πn [E[Lf ]] ⊴ η⋅n
cu+ε

cu+ε ⋅ (ICn,η(Π∣) + ε) . (48)

Analogously to the second part of Lemma 13 and Theorem 14, one can give versions of this result for
the τ -witness condition as well, but for simplicity we will not do so. This theorem allows unbounded
losses but is only useful when the excess risk is bounded, i.e., supf∈F E[Lf ] < ∞, because for
unbounded risk, the required (u, c)-witness condition is excessively strong; see Section 6.3.

The factor cu+ε explodes if η ↑ v(ε). If the v-central condition holds for some v, it clearly also
holds for any smaller v, in particular for v(ε) ∶= v(ε)∧1. Applying the theorem with v (which will
not affect the rates obtained), we may thus take η = v(ε)/2, so that cu+ε is bounded by 1

c (u+ ε+ 2).
The ESI in (48) then implies that with probability at least 1 − e−K the left-hand side exceeds the
right-hand side by at most (u+ε+2)K

cηn . For the case of bounded excess loss, we can further take u to
be supf∈F ∥Lf∥∞ and c = 1. Finally, in the special case when the strong η̄-central condition holds,
we can take ε = 0 and v(0) = η̄ and Theorem 22 specializes to Theorem 14.

In Section 6.2 below we introduce the v-PPC condition. One of the main results of Van Erven
et al. (2015) (in their Section 5) is that, for bounded excess losses, the v-central condition holds
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for some v with v(ε) ≍ ε1−β if and only if the v-PPC condition hold for some v with v(ε) ≍ ε1−β

if and only if the Bernstein condition holds for exponent β and some B > 0; the three conditions
are thus equivalent up to constant factors in the bounded excess loss case. The best case of the
Bernstein condition of β = 1 corresponds to a v with v(0) > 0, i.e., to the strong central condition.
The Bernstein condition is known to characterize the rates that can be obtained in bounded excess
loss problems for proper learners, and the same thus holds for the v-central and v-PPC conditions.
It is also implied by the well-known Tsybakov margin condition as long as F contains the Bayes
optimal classifier (see (Lecué, 2011) and (Van Erven et al., 2015) for discussion).

We now illustrate Theorem 22 for the case of ERM over certain parametric classes when the
v-central condition holds for v of the form v(ε) ≍ ε1−β , so that a Bernstein condition holds with
exponent β. We will see that for bounded losses our result recovers, up to log factors, rates that are
known to be minimax optimal. We first need some notation. For a pseudo-metric space (A, ∥ ⋅ ∥)
and any ε > 0, letN(A, ∥ ⋅∥, ε) be the ε-covering number of (A, ε), defined as the minimum number
of radius-ε balls whose union contains A.

Example 10 (Lipschitz (and Bounded) Loss) Suppose that (i) for each z ∈ Z , the loss ` is G-
Lipschitz as a function of f ∈ F ; (ii) F has bounded metric entropy in some pseudometric ∥ ⋅ ∥; and
(iii) the loss is uniformly bounded over F (so that a witness condition holds). Let Fε be an optimal
ε-net with respect to ∥ ⋅ ∥. Take a uniform prior over F , and (purely for the analysis) consider the
randomized predictor Π∣ that predicts by drawing an f uniformly from a radius-ε ball around f̂ , the
ERM predictor. If the v-central condition holds, it follows that the information complexity of Π∣ is

bounded as Gε + logN(F ,∥⋅∥,ε)
v(ε)n . To see this, for any A ⊂ F let Aε be the ε-extension of A, defined as

{f ∈ F∶ inff ′∈A ∥f − f ′∥ ≤ ε}. Then observe that

eKL(Πn ∥Π0) =
vol(F)

vol({f̂}ε)
≤

vol(⋃f∈Fε{f}
ε)

vol({f̂}ε)
≤
∑f∈Fε vol({f}ε))

vol({f̂}ε)
= N(F , ∥ ⋅ ∥, ε).

Moreover, it is easy to see that the risk of standard ERM (rather than its randomized version) over
the entire class F is at most the risk of Πn plus an additional Gε. Hence, if v satisfies v(ε) = Cε1−β

for some β ∈ [0,1] and if the metric entropy is logarithmic in ε, then by tuning ε and η as in
(7) we see from (48) that ERM obtains a rate of Õ(n−1/(2−β)) (suppressing log-factors) with high
probability — which is the minimax optimal rate in this setting (Van Erven et al., 2015). Note that
the Bernstein condition is automatically satisfied for β = 0, yielding the slow rate of Õ(1/

√
n), and

the other extreme of β = 1 yields the fast rate of Õ(1/n). ◻

6.2. The v-PPC Condition and the GRIP

Trivially, if the v-central condition holds for some function v, then there exists ε > 0 such that, with
c = eεv(ε), for all f ∈ F , E[e−v(ε)Lf ] ≤ c, so that −Lf must have a uniformly exponential upper
tail as in Definition 15. Thus, if −Lf has a polynomial upper tail, the v-central condition cannot
hold. The v-PPC condition is a further weakening of the v-central condition which can still hold
in the latter case. We achieve this by replacing the comparator f∗ε by a more sophisticated pseudo-
predictor mη

F , the generalized reversed information projection (GRIP). The original projection (Li,
1999) was used in the context of density estimation under log loss. We now extend it to general
learning problems:
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Definition 23 (GRIP) Let (P, `,F) be a learning problem. Define3 the set of pseudoprobability
densities EF ,η ∶= {e−η`f ∶ f ∈ F}. For Q ∈ ∆(F), define ξQ ∶= Ef∼Q[e

−η`f ]. The generalized
reversed information projection of P onto conv(E) is defined as the pseudo-loss `gη satisfying

E[`gη] = inf
Q∈∆(F)

E [−
1

η
logEf∼Q[e

−η`f ]] = inf
ξQ∈conv(E)

E [−
1

η
log ξQ] .

Following terminology from the individual-sequence prediction literature, we call the quantity ap-
pearing in the center expectation above a “mix loss” (De Rooij et al., 2014) defined for a distri-
bution Q ∈ ∆(F) as mη

Q ∶= − 1
η logEf∼Q[e

−η`f ]. The notion of mix loss can be extended from
distributions to sets by defining, for any A ⊆ F̄ , the object mη

A as the pseudo-loss satisfying
E[mη

A] = infQ∈∆(A∪{f∗})E[mη
Q].

4 We thus have that `gη = mη
F , and we use the latter notation

from here on out.

Even though the GRIP is only a pseudo-predictor, meaning that it may fail to correspond to any ac-
tual prediction function, the corresponding loss for a GRIP is well-defined, as shown in Appendix G.
The main use of the GRIP lies in the fact that the probability that its loss exceeds that of any f ∈ F

is exponentially small:

Proposition 24 For all f ∈ F , for every η > 0, we have mη
F − `f ⊴η 0.

The proposition implies that mη
F ⊴η `f∗ and hence E[mη

F ] ≤ E[`f∗] and, for any η > 0, F ∪ {mη
F}

satisfies the η-central condition, withmη
F in the role of f∗. We can now define the v-PPC condition:

Definition 25 (Pseudoprobability convexity (PPC) condition) Let η > 0 and ε ≥ 0. We say that
(P, `,F) satisfies the η-PPC condition up to ε if there exists some f̃ ∈ F such that

EZ∼P [`f̃] − inf
Q∈∆(F)

E [−
1

η
logEf∼Q[e

−η`f ]] ≤ ε, i.e., EZ∼P [`f̃ −m
η
F] ≤ ε. (49)

Let v ∶ [0,∞) → [0,∞) be a bounded, non-decreasing function satisfying v(ε) > 0 for all ε > 0. We
say that (P, `,F) satisfies the v-PPC condition if, for all ε ≥ 0, there exists a function f̃ ∈ F such
that (49) is satisfied with η = v(ε).

In both the v-central and v-PPC conditions, we look at pairs (η, ε) such that there exists a comparator
g which has risk no better than E[`f∗] − ε, and for which (P, `,F ∪ {g}) satisfies the η-central
condition. We achieve this for any (η, ε) with 0 < η ≤ v(ε), where for the v-central condition, the
comparator was g = f∗ε (see (47)) and for the v-PPC condition, it is g =mη

F .
The name “PPC” stems from the fact that the condition expresses a pseudo-convexity property

of the set of pseudoprobability densities mentioned in Definition 23; see Van Erven et al. (2015) for
a graphical illustration and for the proof that the v-central condition implies the v-PPC condition
for the same v. We already mentioned that Van Erven et al. (2015) (in their Section 5) proved
the reverse implication, hence equivalence of the v-central and v-PPC conditions, up to constant

3. This transformation is known as entropification (Grünwald, 1999). For η = 1 and log-loss, pseudo-probability densi-
ties are just standard probability densities, while for general η and `, the analogy to probability densites is still useful,
hence the name; in particular, ξQ shares some properties of mixture distributions (Van Erven et al., 2015).

4. The reason for automatically taking the union of A with f∗ is to lessen the notation for the mini-grip, introduced in
Appendix E.2.1.
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factors, for bounded excess losses. To give some initial intuition for the unbounded case, we note
that the v-PPC condition is satisfied for v(ε) = C ⋅ ε for a suitable constant C whenever the witness
condition holds. While this was known for bounded excess losses (where linear v corresponds to
the weakest Bernstein condition, which automatically holds), by Proposition 26 below it turns out
to hold even if the excess losses are heavy-tailed (so the v-central condition can never hold) and
the risk can be unbounded, as long as the second moment of the risk of f∗ is finite. This will
imply, for example, (Theorem 31 below and discussion) that the “slow” Õ (1/

√
n) excess risk rate

for parametric models can be obtained in-probability by ηn-generalized Bayes (with the optimal ηn
depending on the sample size as ηn ≍ 1/

√
n) under hardly any conditions.

Proposition 26 Let (P, `,F) be such that for all f ∈ F , all z ∈ Z , `f(z) ≥ 0 and such that for
some fixed u > 0, for all f ∈ F with E[Lf ] > 0,

E [(`f − `f∗) ⋅ 1{`f−`f∗≤u}] ≥ 0. (50)

(in particular this is implied by the (u, c)-witness condition (34)). Then for all η ≤ 1/E[`f∗],

EZ∼P [`f∗ −m
η
F] ≤ η ⋅ e ⋅ (u

2
+

3

2
E[`2f∗]) .

As a consequence, if EZ∼P [`2f∗] < ∞ then the v-PPC condition holds with v(ε) = (Cε)∧(1/E[`f∗])

with C = e−1 ⋅ (u2 + 3
2 E[`2f∗])

−1.

The proof of this proposition is based on the following fact, interesting in its own right and also
used in the proof of later results:

Proposition 27 For given learning problem (P, `,F), let `′ be such that (a) for all f ∈ F , all
z ∈ Z , `′f(z) ≤ `f(z), and (b), `′f∗(z) = `f∗(z). If the “smaller-loss” learning problem (P, `′,F)

satisfies the v-PPC condition for some function v, then so does (P, `,F).

We now work towards a first risk bound under the v-PPC condition, using the GRIP. The devel-
opment is entirely analogous to that leading up to Theorem 22, our risk bound under the v-central
condition. We start with the following result, which essentially only differs from Lemma 13 and the
corresponding lemma for the v-central condition and f∗ε -comparator, Lemma 21, in that it has `f∗
(as in Lemma 13) and `f∗ε (as in Lemma 21) on the right-hand side replaced by the GRIP loss mη̄

F
and requires η < η̄/2. The proof is much more involved though since the comparators on the left
and the right are not connected in a straightforward manner.

Lemma 28 Let (P, `,F) be a learning problem and let f ∈ F . Let η̄ > 0. Suppose that (34)
holds for some u > 0 and c ∈ (0,1], i.e., (P, `,{f, f∗}) satisfies the (u, c)-witness condition. Let
c′u ∶=

1
c
η⋅u+1

1− 2η
η̄

. Then for all η ∈ (0, η̄/2),

E[Lf ] ≤ c′2u ⋅E
ANN(η) [`f −m

η̄
F] . (51)

In particular, if (P, `,F) satisfies the (u, c)-witness condition then (51) holds for all f ∈ F .

Based on this lemma it is now easy to prove analogues of Theorem 14. Below we first present our
second main result, an excess risk bound that holds under the basic witness condition. The result
allows unbounded and heavy-tailed losses but is only useful when the excess risk is bounded; see
Section 6.3.
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Theorem 29 (Excess Risk Bound - Bounded Excess Risk Case) Let Π∣ be an arbitrary learning
algorithm based on F . Assume that (P, `,F) satisfies the (u, c)-witness condition (34). Let c′u be
as in Lemma 28. Then under the v-PPC condition, for any η < v(ε)

2 ,

EZn1 [Ef∼Πn [E[Lf ]]] ≤ c
′
2u (EZn1 [ICn,η(Π∣)] + ε) . (52)

The result is entirely analogous to Theorem 22 (and the remarks made there apply here as well),
with two differences: first, v is replaced by v/2, which will worsen the obtainable bounds by a
factor of 2 and hence will not affect the rates. Second, the ESI in (48) is replaced by an expecta-
tion. Thus, we have an exponential in-probability bound (holding with probability 1 − δ up to an
O(log(1/δ))-term) under the v-central condition but not under the v-PPC condition. That such a
deviation bound does not hold under the v-PPC condition is inevitable since all of our bounds are
valid for ERM estimators, which, under heavy-tailed loss distributions, are known to behave poorly
in probability (Catoni, 2012, Proposition 6.2). There exist specialized M -estimators for mean es-
timation problems (Catoni, 2012) or more generally (for regression problems) that achieve better
high-probability bounds by employing a variation of the median-of-means idea (Nemirovskii and
Yudin, 1983; Hsu and Sabato, 2016; Lugosi and Mendelson, 2019).

To illustrate Theorem 29, we now provide an example where the v-central condition cannot hold
because the excess risk has polynomially decaying tails; yet, the v-PPC condition may still hold for
v that allow for faster rates than the “slow” Õ(1/

√
n).

Example 11 (Heavy-tailed regression with bounded predictions) We continue with the setting
of Example 7. In addition to assuming that E[Y 2 ∣ X] ≤ C a.s. for a constant C, we also assume
that E[∣Y ∣s] < ∞ for some s ≥ 2; note that the first assumption already implies the second for
s = 2. We further assume that F has bounded metric entropy in sup-norm, with covering numbers
N(F , ∥ ⋅ ∥∞, ε) growing polynomially in ε. Without subexponential tail decay, the v-central con-
dition fails to hold for any non-trivial v; however, as shown by Van Erven et al. (2015, Example
5.10) (based on a result of Juditsky et al. (2008)), if E[∣Y ∣s] < ∞ for some s ≥ 2, then the v-PPC
condition holds for v(ε) = O(ε2/s).5 Moreover, as we showed in Example 7, the witness condition
holds if E[Y 2 ∣ X] < ∞ a.s.; there, we also established that the Bernstein condition holds with
β = 1.

Now, take a uniform prior overF , and take the randomized predictor Π∣ as in Example 10 which
randomizes over an ε-ball around the ERM predictor f̂ . Then, for s ≥ 2, Theorem 29 implies that
the expected excess risk of Πn is at most

EZn1

⎡
⎢
⎢
⎢
⎢
⎣

Ef∼Πn

⎡
⎢
⎢
⎢
⎢
⎣

1

n

n

∑
j=1

Lf(Zj)

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

+
logN(F , ∥ ⋅ ∥, ε)

v(ε)n
+ ε.

5. What is actually shown there is that a property called v-stochastic exp-concavity holds, but, the results of that paper
imply then that v-stochastic mixability holds which in turn implies that the v-PPC condition holds.
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The first term can be bounded as

EZn1

⎡
⎢
⎢
⎢
⎢
⎣

Ef∼Πn

⎡
⎢
⎢
⎢
⎢
⎣

1

n

n

∑
j=1

(Lf̂(Zj) + `f(Zj) − `f̂(Zj))

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

≤ EZn1

⎡
⎢
⎢
⎢
⎢
⎣

Ef∼Πn

⎡
⎢
⎢
⎢
⎢
⎣

1

n

n

∑
j=1

(`f(Zj) − `f̂(Zj))

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

= EZn1

⎡
⎢
⎢
⎢
⎢
⎣

Ef∼Πn

⎡
⎢
⎢
⎢
⎢
⎣

1

n

n

∑
j=1

(f2
(Xj) − f̂

2
(Xj) + 2Yj(f̂(Xj) − f(Xj)))

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

≤ EZn1

⎡
⎢
⎢
⎢
⎢
⎢
⎣

2ε
⎛
⎜
⎝
∥F∥∞ +

⎛

⎝

1

n

n

∑
j=1

Y 2
j

⎞

⎠

1/2
⎞
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

which is at most 2ε (∥F∥∞ + ∥Y ∥L2(P )) = O(ε), and it is simple to verify that the ERM predic-

tor f̂ satisfies the same bound. Tuning ε in O (ε +
logN(F ,∥⋅∥,ε)

ε2/sn
) yields a rate of Õ(n−s/(s+2)) in

expectation, where the notation hides log factors. ◻

Two remarks are in order about the rate obtained in the above example.
First, Juditsky et al. (2008) previously obtained this rate for finite classes F without the assump-

tion that E[Y 2 ∣ X] is almost surely uniformly bounded; their result is achieved by an online-to-
batch conversion of a sequential algorithm which, after the conversion, plays actions in the convex
hull of F . It is unclear if we truly need the assumption on the conditional second moment of Y or
if the need for this assumption is just an artifact of our analysis. In the regime where our stronger
assumption holds, in the case of convex luckiness (see Example 7) the rates obtained in the present
paper match those of Juditsky et al. (2008). However, if convex luckiness does not hold, then the
results of Juditsky et al. (2008) still enjoy the rate of Õ(n−s/(s+2)) whereas we cannot guarantee this
rate. This is not surprising: without convex luckiness, “improper learners” that play in the convex
hull of F are inherently more powerful than (randomized) proper learners.

Second, even when convex luckiness does hold, the rate obtained in Example 11 above is not
optimal. The reason is that in the setting of this example, a Bernstein condition with β = 1 does
hold, as was established earlier in Example 7. Thus, via Corollary 6.2 of Audibert (2009) it is pos-
sible to obtain the better rate of Õ(1/n) in expectation using Audibert’s SeqRand algorithm. No-
tably, the SeqRand algorithm for statistical learning involves using a sequential learning algorithm
which incorporates a second-order loss-difference term. For new predictions, SeqRand employs an
online-to-batch conversion based on drawing functions uniformly at random from the set of pre-
viously played functions. It is thus a randomized proper learning algorithm. There are now two
possibilities. The first is that there exist F satisfying the condition of Example 7 for which ERM
and η-generalized Bayes simply do not achieve the rate of Õ(1/n); in that case either SeqRand’s
second-order nature or its online-to-batch step may be needed to get the fast rate. The other pos-
sibility is that ERM and η-generalized Bayes do generally attain the fast rate under the Bernstein
condition and a.s. bounded E[Y 2 ∣ X]-condition, in which case Theorem 29 is suboptimal for this
situation — we return to this issue in the Discussion (Section 7). In any case, SeqRand is computa-
tionally intractable for most infinite classes, and we are not aware of any polynomial-time learning
algorithms that match the rate of SeqRand.
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6.3. Bounds for Unbounded Excess Risk

We now present a result for a learning problem (P, `,F) with unbounded excess risk. Once again,
the result follows (now with some work) from Lemma 28, but now we need to be careful because
the (u, c)-witness condition with fixed u and c cannot be expected to hold: it would become an
exceedingly strong condition for E[Lf ] → ∞. We will thus require the τ -witness condition for a
particular, easier τ , namely τ(x) = u(1∨x) for some u ≥ 1, so that for large x, τ(x) ≍ x. We first
show, in Proposition 30 below, that at least for the squared loss this condition can be expected to
hold in a variety of situations. The price to pay for using this τ is that we only get in-probability
results — we show those in Theorem 31 (we do not know whether in-expectation results hold as
well). Note that one could obtain better constants in that theorem if one employed τ(x) = a∨(bx)
for the best possible a and b, but for simplicity we did not do this.

Proposition 30 (Bernstein plus small-ball implies unbounded witness) Consider the setting of
Example 7, i.e., regression with ` the squared loss and convex luckiness. We still assume convex
luckiness and make the weaker assumption E[Y 2] < ∞, but now we do not not assume that the
risk is bounded; i.e., we can have supf∈F E[`f ] = ∞. Fix some b > 0 and suppose that there exists
constants κ > 0, ε ∈ (0,1) such that

1. for all f ∈ F with E[Lf ] > b, Mendelson’s (2014) small-ball assumption (43) holds with
constants ε, κ for f, f∗ (i.e. with f∗ in the role of h),

2. For all c0 > b, all f ∈ F with E[Lf ] ≤ c0, there is a B such that the (1,B)-Bernstein
condition holds, i.e., E[L2

f ] ≤ BE[Lf ].

Then (P, `,F) satisfies the (τ, c)-witness condition, with τ(x) = u(1∨x) for some u ≥ 1 and with
c ∈ (0,1] which depends only on κ, ε, b, and E[`f∗].

Example 12 (Heavy-Tailed Regression, Continued) Mendelson provides several examples of con-
vex F for which the small-ball assumption holds; the proposition above shows that for all these
examples, the τ -witness condition holds as well as soon as, for f with small excess risk, the Bern-
stein condition holds. For example, under the following “meta”-condition the small-ball assumption
holds (see (Mendelson, 2014, Lemma 4.1)) and, as we show in Appendix C.3, the Bernstein con-
dition holds as well for Fc0 ∶= {f ∈ F ∶ E[Lf ] < c0}, for all c0 ≥ b, as long as we assume convex
luckiness (see Example 7).

E[`2f∗] < ∞ and for some A > 0, for all f ∈ Fc0 ,

E[(f(X) − f∗(X))
4
]
1/2

≤ A ⋅E[(f(X) − f∗(X))
2
].

We stress however that our theorem below does not recover Mendelson’s rates forL2(P )-estimation
error (Section 7), which rely on further highly sophisticated analysis of the squared loss situation;
our goal here is merely to show that our τ -witness condition for the unbounded risk case is not a
very strong one. ◻

Theorem 31 (Excess Risk Bound - Unbounded Excess Risk Case) Assume that (P, `,F) satis-
fies the (τ, c)-witness condition (35) with τ ∶ x ↦ u(1∨x) for some u ≥ 1 and constant c. Let
ε1, ε2, . . . and η1, η2, . . . be sequences such that

εn → 0, nηn →∞.
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Let cu ∶= u
c

ηn+1
1− ηn

v(εn)
and c′u ∶=

u
c

ηn+1

1− 2ηn
v(εn)

. Suppose that ICn,η ∶= ICn,η(Π∣) is nontrivial in the sense

that E[ICn,ηn] → 0.

1. Let Π∣ ≡ (f̂ ,Π0) represent a deterministic estimator. Suppose that, for given function v, the
v-PPC condition holds and that for all n, 0 < ηn < v(εn)/2. Then for all n larger than some
n0, the right-hand side of the following equation is bounded by 1, and for all such n, for all
δ > 0, with probability at least 1 − δ,

E[Lf̂ ] ≤ (c′2u ⋅
1

δ
) ⋅ BOUND, with BOUND = (E [ICn,ηn] + εn) . (53)

Now suppose that, more strongly, the v-central condition holds as well. Let ICn,η be any
upper bound on ICn,η(f

∗∥Π∣) that is nontrivial in that E[ICn,ηn] → 0. LetCn,δ be a function
of δ ∈ (0,1) such that for all δ ∈ (0,1), Cn,δ > 2 log(2/δ) and

P (ICn,ηn ≥ Cn,δ ⋅E [ICn,ηn]) ≤ δ. (54)

Then for all n larger than some n0, the right-hand side of the following equation is bounded
by 1, and for all such n, for all 0 < δ < 1, with probability at least 1 − δ,

E[Lf̂ ] ≤ (c′u+εn ⋅Cn,δ) ⋅ BOUND, with BOUND = (E [ICn,ηn] + εn +
2

nηn
) . (55)

2. Now let Π∣ be a general, potentially nondeterministic estimator, suppose that the v-PPC con-
dition holds and let ICn,ηn be any bound on IC(Π∣) that is slightly larger than ICn,ηn , i.e.,
there exist a sequence a1, a2, . . .→∞ such that, for all n, all zn, ICn,ηn ≥ anICn,ηn . Then

Πn ({f ∈ F ∶ E[Lf ] > c
′
2u ⋅ BOUND}) → 0 in P -probability, (56)

with BOUND = E [ICn,ηn] + εn.

When Π∣ represents a deterministic estimator f̂ such as an η-two part MDL estimator, the result is
just a standard convergence-in-probability result. For learning algorithms that output a distribution
such as generalized Bayes, the result seems fairly weak as nothing is said about the rate at which the
deviation probability goes to 0. Note, however, that the same holds for most standard results about
posterior convergence in Bayesian statistics; for example, the results of GGV (see Example 2) are
stated in exactly the same manner.

Note that the factor for the PPC-results increases quickly with δ; depending on how strong a
bound (54) can be given, the v-central results can thus become substantially stronger asymptotically.
This is the case even though their bound has an additional 1/(nηn) term. Indeed, this extra term is of
the right order, comparable to the upper bound on ICn,ηn given by (4). Therefore, for v(x) ≍ x1−β ,
optimization of εn and ηn can be done in the same way as for the bounded risk case, leading to a
rate of Õ(n−1/(2−β)) as in (7). To give an example in which the bound for the v-central condition
gets a better dependence on δ than v-PPC consider generalized Bayesian posteriors under the GGV
condition (21) discussed in Section 3.3; in that case, we get the bound (25) which implies (54) for a
Cn,δ = o(δ

−1/2) (rather than the O(δ−1) in the PPC-result) and with εn, as defined there used as an
upper bound on ICn,η. Still, in this example Cn,δ is polynomial in δ whereas Theorem 22 had only
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a logarithmic dependence on δ. As mentioned earlier, this stronger dependence on δ is unavoidable
as the results under the v-PPC condition apply to methods like ERM, which have poor deviation
properties.

To derive further corollaries from this theorem, we mention the following extension of Proposi-
tion 26:

Proposition 32 (when (τ, c)-witness implies v-PPC) Suppose that the (τ, c)-witness condition
holds for given learning problem (P, `,F) with τ ∶ x ↦ u(1∨x) for some u ≥ 1 and constant
c ∈ (0,1] as in Theorem 31. Further suppose that that `f(z) ≥ 0 for all f ∈ F and all z ∈ Z . Then
the v-PPC condition holds with v(ε) = (Cε)∧(1/E[`f∗]), where C = e−1 ⋅(u2 (1∨(E[`f∗]/c)

2
)+

3
2 E[`2f∗])

−1.

The above proposition implies that if the τ -witness condition holds with τ as in Theorem 31 above,
then the results (53) and (56) automatically hold with choice 2ηn < (Cεn)∧(1/E[`f∗]), which for
large n is equivalent to ηn < Cεn/2. For parametric F we can take εn ≍ 1/

√
n, so that the v-PPC

condition is satisfied with ηn ≍ 1/
√
n. Thus, under quite weak conditions (for all f, z, `f(z) ≥ 0,

E[`2f∗] < ∞, and the τ -witness condition holds as above), but with unbounded, heavy tailed losses
and without explicitly imposing any GRIP conditions, we get in all three cases of Theorem 31, by
choosing ηn ≍ 1/

√
n, that BOUND = Õ (1/

√
n). Consequently, even under very weak assumptions,

we still get convergence for generalized ηn-Bayesian estimators, albeit at the “slow” rate.

7. Discussion & Open Questions

In this paper we presented several theorems that gave convergence rates for general estimators,
including pseudo-Bayesian and ERM estimators, under general “easiness conditions”. We end by
putting these conditions in context and discussing some of the limitations of our approach, thereby
pointing to avenues for future work.

Easiness Conditions We proved our convergence rates under the GRIP conditions (the v-central
and v-PPC conditions) and the τ -witness condition, and we provided some relations to other condi-
tions such as convex luckiness for squared loss (defined in Example 7), Bernstein conditions (Def-
inition 17), and uniformly exponential tails (Definition 15). As promised in the beginning of this
paper, our conditions and results complement those of Van Erven et al. (2015) which are mostly for
the bounded case. The most important conditions of that paper that did not show up here are (a) the
extension of convex luckiness beyond the squared loss (it is formally defined for general losses by
Van Erven et al. (2015) under the name “Assumption B”) and (b) the v-stochastic mixability condi-
tion (see Definition 5.9 of Van Erven et al. (2015)). We will restrict discussion of the v-stochastic
mixability condition to the case where the decision set Fd from Van Erven et al. (2015) is equal to
conv(F). In the present paper, where the set P from Van Erven et al. (2015) is always equal to
the singleton {P}, it is easy to see that v-stochastic mixability is equivalent to the v-PPC condition
but with the minimizer f∗ over F replaced by the minimizer f∗conv over conv(F). Van Erven et al.
(2015) show that for bounded excess losses, v-stochastic mixability characterizes obtainable rates
for improper learners that are allowed to play in the convex hull of F . v-stochastic mixability is in
turn implied by the easiness conditions of Juditsky et al. (2008), (for constant v) by conditions on the
loss function such as mixability and exp-concavity (Cesa-Bianchi and Lugosi, 2006), and by strong
convexity. For clarity we give an overview of the relevant implications between our conditions and
those of Van Erven et al. (2015) in Figure 1.
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excess loss
is...

condition
type

loss function result

bounded GRIP general v-PPC⇔ v-central (vE)
x1−β-PPC⇔ xβ-Bernstein (vE)

witness general (u, c)-witness always holds (trivial)
unbounded GRIP general convex luckiness + v-stochastic mixability ⇒ v-

PPC (vE)
general v-central⇒ v-PPC (vE)
general v-central⇒ Lf has uniformly exponential lower tail

(vE)
log loss convex luckiness⇒ 1-central (vE)
squared loss convex luckiness + bounded predictions + Y ∣ X

has a.s. uniformly bounded 2nd moment ⇒ (1,B)-
Bernstein (GM, Example 7)

unbounded witness general (β,B)-Bernstein ⇒ (τ, c)-witness, τ(x) ≍ xβ−1

(GM, Proposition 18)
general Lf has uniformly exponential upper tail ⇒ (τ, c)-

witness, τ(x) ≍ 1∨ log(1/x) (GM, Lemma 16)
log loss, cor-
rect model

Wong-Shen ⇔ Lf has uniformly exponential tails
(GM, Example 6)

Figure 1: GM stands for “established in the present paper”, vE refers to Van Erven et al. (2015). All
implications hold up to constant factors. Note that boundedness always refers to excess
loss. For example, for Lipschitz losses on a bounded domain, the losses themselves may
have heavy tails but the excess loss will be bounded.
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Misspecification We showed that our methods are particularly well-suited for proving a form of
consistency for (generalized Bayesian) density estimation under misspecification; under only the η̄-
central condition, a weak condition on the support of pf∗ , and using a prior such that the weakened
GGV condition (22) holds, we can show that for any η < η̄, the η-generalized Bayesian posterior is
consistent in the sense of our misspecification metric (see Proposition 11 and discussion below it).
As stated there, an interesting open question is under which conditions the metric entropy for the
misspecified case is of the same order as the metric entropy for the well-specified case, as then the
misspecification metric dominates the standard Hellinger metric.

Proper vs. Improper There exist learning problems (P, `,F) on which no proper learner — one
which always predicts inside F — can achieve a rate as good as that of an improper learner, which
can select f̂n /∈ F (Audibert, 2007; Van Erven et al., 2015). In this paper we considered randomized
proper estimators, to which the same lower bounds apply; hence, they cannot in general compete
with improper methods such as exponentially weighted average forecasters and other aggregation
methods. Such methods achieve fast rates under conditions such as stochastic exp-concavity (Judit-
sky et al., 2008), which imply the “stochastic mixability” condition that, as explained by Van Erven
et al. (2015), is sufficient for fast rates for aggregation methods. To get rates comparable to those
of improper learners, we invariably need to make a “convex luckiness” assumption under which, as
again shown by Van Erven et al. (2015), v-stochastic mixability implies the v-PPC condition (see
also Figure 1); the latter allows for fast rates for randomized proper learners. An interesting question
for future work is whether our proof techniques can be extended to incorporate, and get the right
rates for, improper methods such as the empirical star estimator (Audibert, 2007) and Q-aggregation
(Lecué and Rigollet, 2014). Since the original analysis of these methods bears some similarity to
our techniques, this might very well be possible.

While superior rates for improper learners are inevitable, it is more worrying that the rate we
showed for ERM in heavy-tailed bounded regression is worse than the rate for the SeqRand al-
gorithm, which is also randomized proper (see Example 11 and text below it). We do not know
whether the rate we obtain is the actual worst-case rate that ERM achieves under our conditions, or
whether ERM achieves the same rate as SeqRand, or something in between. In the latter two cases,
it would mean that our bounds are suboptimal. Sorting this out is a major goal for future work.

Empirical process vs Information-theoretic Broadly speaking, one can distinguish approaches
to proving excess risk bounds into two main groups: on the one hand are approaches based on empir-
ical process theory (EPT) such as (Bartlett et al., 2005; Bartlett and Mendelson, 2006; Koltchinskii,
2006; Mendelson, 2014; Liang et al., 2015; Dinh et al., 2016) and most work involving VC di-
mension in classification. On the other hand are information-theoretic approaches based on prior
measures, change-of-measure arguments, and KL penalties such as PAC-Bayesian and MDL ap-
proaches (Barron and Cover, 1991; Li, 1999; Catoni, 2003; Audibert, 2004; Grünwald, 2007; Au-
dibert, 2009). A significant advantage of EPT approaches is that they often can achieve optimal rates
of convergence for “large” models F with metric entropy logN(F , ∥ ⋅∥, ε) that increases polynomi-
ally in 1/ε, where ∥ ⋅ ∥ is the L1(P ) or L2(P )-metric. Prior-based approaches (including the one in
this paper) may yield suboptimal rates in such cases (see Audibert (2009) for discussion). A closely
related advantage of EPT approaches is that they can handle empirical covers of F , thus allowing
one to prove bounds for VC classes, among others.

An advantage of prior-based approaches is that they inherently penalize, so that whenever one
has a countably infinite union of classes F = ⋃j∈NFj , the approaches automatically adapt to the
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rate that can be obtained as if the best Fj containing f∗ were known in advance; this adaptation
was illustrated at various places in this paper (see final display in Proposition 6, equation (27)).
This happens even if for every n, there is a j and f ∈ Fj with empirical error 0; in such a case
unpenalized methods as often used in EPT methods would overfit. In the paper (Grünwald and
Mehta, 2019), a companion paper to the present one, we show for bounded excess losses that the
two approaches may be combined. In fact one can provide a single excess risk bound in which the
information complexity is replaced by a strictly smaller quantity and instead of a prior one uses a
more general “luckiness function” (Grünwald, 2007) that is better suited for dealing with penalized
estimators. For some choices of luckiness function, one gets a slight strengthening of the excess risk
bounds given in this paper; for other choices, one gets bounds in terms of Rademacher complexity,
L2(P ) and empirical L2(Pn) covering numbers. Thus, the best of both worlds is achievable, but
for the time being only for bounded excess losses.

Another major goal for future work is thus to provide such a combined EPT-information theo-
retic bound for unbounded excess losses that allows for heavy-tailed excess loss. Within the EPT
literature, some work has been done: Mendelson (2014, 2017b) provides bounds on the L2(P )-
estimation error ∥f̂−f∗∥2

L2(P ) and Liang et al. (2015) on the related squared loss risk. For other loss
functions not much seems to be known: Mendelson (2017b) shows that improved L2(P )-estimation
error rates may be obtained by using other, proxy loss functions during training; however, the target
remains L2(P )-estimation. In contrast, our approach allows for general loss functions ` including
density estimation, but we do not specially study proxy training losses.

These last three EPT-based works can deal with (P, `,F) with unbounded excess (squared loss)
risk. This is in contrast to earlier papers in the information-theoretic/PAC-Bayes tradition; as far
as we know, our work is the first one that allows one to prove excess risk convergence rates in the
unbounded risk case (Theorem 31) for general models including countable infinite unions of models
as in Proposition 6. Previous works dealing with unbounded excess loss all rely on a Bernstein
condition — we are aware of (Zhang, 2006a), requiring β = 1; (Audibert, 2004), for the transductive
setting rather than our inductive setting; and, the most general, (Audibert, 2009). However, for
convex or linear losses, a Bernstein condition can never hold if supf∈F E[Lf ] is unbounded, as
follows trivially from inspecting Definition 17, whereas the v-central and PPC-conditions can hold.
See for instance Example 15 in Appendix I, where F is just the densities of the normal location
family without any bounds on the mean: here the Bernstein condition must fail, yet the strong central
condition and the witness condition both hold and thus Theorem 31 applies (for some moderateM ).

In the unbounded-excess-loss-yet-bounded-risk case, the difference between these works and
ours opaques: there may well be cases (though we have not produced one) where the Bernstein
condition holds for some β but the v-PPC condition does not hold for v(ε) ≍ ε1−β; the opposite
certainly can happen (note however that in the bounded excess loss case these two conditions are
equivalent; see Figure 1). Indeed, Example 14 in Appendix I exhibits an F for which the excess
risk is bounded but its second moment is not, whence the Bernstein condition fails to hold for any
positive exponent, while both the strong central condition and the witness condition hold. Theorem
29 therefore applies whereas the results of Audibert (2009) and Zhang (2006b) do not. Finally we
note that Audibert (2009) proves his bounds for his ingenious SeqRand learning algorithm, whereas
Zhang’s and our bounds hold for general estimators.

Yet another major goal for current work is thus to disentangle the role of the PPC condition and
the Bernstein condition for unbounded excess losses; ideally we would extend our bounds to cover
faster rates under a weaker condition implied by either of the Bernstein or PPC conditions.
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Additional future work: learning η A general issue with generalized Bayesian and MDL meth-
ods, but one that is avoided by ERM, is the fact that they depend on the learning rate parameter
η. While this is often pragmatically resolved by cross-validation (see e.g. Audibert (2009) and
many others), Grünwald (2011, 2012) give a method for learning η that provably finds the “right” η
(i.e. optimal for the best Bernstein condition that holds for the given learning problem) for bounded
excess loss functions and likelihood ratios; experiments (Grünwald and Van Ommen, 2017) indicate
that this “safe Bayesian” method works excellently in the unbounded case as well. While it seems
that the proof technique to handle learning η carries over to the present unbounded setting, actually
proving that the SafeBayes method still works remains a task for future work.
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Gábor Lugosi and Shahar Mendelson. Regularization, sparse recovery, and median-of-means tour-
naments. Bernoulli, 25(3):2075–2106, 2019.

Ryan Martin, Raymond Mess, and Stephen G. Walker. Empirical Bayes posterior concentration in
sparse high-dimensional linear models. Bernoulli, 23(3):1822–1847, 2017.

David McAllester. PAC-Bayesian stochastic model selection. Machine Learning, 51(1):5–21, 2003.

Peter McCullagh and John Nelder. Generalized Linear Models. Chapman and Hall/CRC, Boca
Raton, second edition, 1989.

R. Meir and T. Zhang. Generalization error bounds for Bayesian mixture algorithms. Journal of
Machine Learning Research, 4:839–860, 2003.

Shahar Mendelson. Learning without concentration. In Proceedings of The 27th Conference on
Learning Theory, pages 25–39, 2014.

Shahar Mendelson. On aggregation for heavy-tailed classes. Probability Theory and Related Fields,
168(3-4):641–674, 2017a.

Shahar Mendelson. Learning without concentration for general loss functions. Probability Theory
and Related Fields, Jun 2017b.

Jeffrey W Miller and David B Dunson. Robust Bayesian inference via coarsening. Journal of the
American Statistical Association, pages 1–13, 2018.

Arkadii Nemirovskii and David Borisovich Yudin. Problem complexity and method efficiency in
optimization. Wiley-Interscience, 1983.

Jorma Rissanen. Stochastic Complexity in Statistical Inquiry. World Scientific, Hackensack, NJ,
1989.

R. Tyrrell Rockafellar. Convex Analysis. Princeton University Press, Princeton, NJ, 1970.
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Appendix A. Proofs for Section 3

Proof (of Proposition 1) First, we prove (a), i.e., limη↓0 −
1
η logE[e−ηX] = limη↓0

1
η
(1 −E[e−ηX]) =

E[X].
Define yη ∶= E[e−ηX]; we will use the fact that limη↓0 E[e−ηX] = 1 (from Fatou’s Lemma,

using the nonnegativity of e−ηx).
Now, from Lemma 2 of Van Erven and Harremoës (2014), for y ≥ 1

2 we have (y−1) (1 + 1−y
2

) ≤

log y ≤ y − 1. Hence,

lim
η↓0

−
1

η
logE[eηX] = lim

η↓0
−

1

η
log yη = lim

η↓0
−

1

η
(yη − 1) = lim

η↓0
1

η
E[1 − e−ηX],
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which completes the proof of the first equality.
Now, for all x the function η → 1

η (1 − e
−ηx) is non-increasing, as may be verified since

sign(xe−ηx − 1−e−ηx
η ) = − sign(eηx − (ηx + 1)) ≤ 0.

Next, we rewrite the following Hellinger-divergence-like quantity:

E [
1

αη̄
(1 − e−αη̄X)] = E [

1

αη̄
(1 − e−αη̄X) −

1

η̄
(1 − e−η̄X)] +

1

η̄
E [1 − e−η̄X] .

Now take any decreasing sequence α = αj ∈ (αi)i≥1 going to zero with α1 < 1. We have for all
j that x ↦ 1

αj η̄
(1 − e−αj η̄x) − 1

η̄ (1 − e
−η̄x) is a positive function, and the corresponding sequence

with respect to j is non-decreasing. Hence, the monotone convergence theorem applies and we may
interchange the limit and expectation, yielding

lim
α↓0

E [
1

αη̄
(1 − e−αη̄X) −

1

η̄
(1 − e−η̄X)] +

1

η̄
E [1 − e−η̄X]

= E [lim
α↓0

1

αη̄
(1 − e−αη̄X) −

1

η̄
(1 − e−η̄X)] +

1

η̄
E [1 − e−η̄X]

= E [lim
η↓0

1 − e−ηX

η
] = E [

limη↓0Xe−ηX

1
] = E[X],

where the penultimate equality follows from L’Hôpital’s rule. This concludes the proof of the
second part of (a). Next, we show (b). Observe that for any η′ ≤ η, the concavity of x ↦ xη

′/η

together with Jensen’s inequality implies that

−
1

η′
logE [e−η

′X
] = −

1

η′
logE [(e−ηX)

η′/η
] ≥ −

1

η′
log (E [e−ηX])

η′/η
= −

1

η
logE [e−ηX] .

A.1. Proof of Lemma 33, extending Lemma 5

We begin with an extension of Lemma 5. This more general result will be used in the proof of
Theorem 29. It generalizes Lemma 5 in that it allows general comparators φ(f), which depend on
the f being compared, instead of just the risk-minimizing f∗ (and it continues to hold even if F
does not contain an optimal f∗). Formally, let (P, `,F) be a learning problem. For f ∈ F , we work
with the excess loss `f − `φ(f), where φ ∶ F → F̄ is a comparator map6 which, in the special case
of Lemma 5, is simply the trivial function mapping each f ∈ F to f∗.

Lemma 33 Let (P, `,F) represent a learning problem. Let Π∣ be a learning algorithm for this
learning problem that outputs distributions on F . Let φ ∶ F → F̄ be any deterministic function
mapping the predictor f ∼ Πn to a set of nontrivial comparators. Then for all η > 0, we have:

Ef∼Πn [E
ANN(η)
Z∼P [`f − `φ(f)]] ⊴η⋅n ICn,η (φ(f) ∥Π∣) . (57)

where ICη is the (generalized) information complexity, defined as

ICn,η (φ(f) ∥Π∣) ∶= Ef∼Πn [
1

n

n

∑
i=1

(`f(Zi) − `φ(f)(Zi))] +
KL(Πn ∥Π0)

η ⋅ n
. (58)

6. The set F̄ is defined at the beginning of Section 6.
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By the finiteness considerations of Appendix H, ICn,η(φ(f) ∥Π∣) is always well-defined but may
in some cases be equal to −∞ or ∞. The explicit use above of a comparator function φ differs
from Zhang’s statement, in which the ability to use such a mapping was left quite implicit; however,
inspection of the proof of Theorem 2.1 of Zhang (2006b) reveals that our version above with com-
parator functions is also true. Comparator functions will be critical to our application of Lemma 33.
For completeness, we provide a proof of this generalized result.

Proof (of Lemma 33) For any measurable function ψ ∶ F × Zn → R it holds that

Ef∼Πn[ψ(f,Z
n
)] − KL(Πn ∥Π0) ≤ logEf∼Π0 [e

ψ(f,Zn)
] . (59)

This result, a variation of the “Donsker-Varadhan variational bound” follows from convex duality;
see Zhang (2006b) for an explicit proof.

Define the functionRn∶ F ×Zn → R asRn(f, zn) = ∑nj=1 (`f(zj) − `φ(f)(zj)). Then (59) with

the choice ψ(f,Zn) = −ηRn(f,Zn) − logEZ̄n∼Pn [e−ηRn(f,Z̄
n)] yields

Ef∼Πn [−ηRn(f,Z
n
) − logEZ̄n [e−ηRn(f,Z̄

n)
]] − KL(Πn ∥Π0) ≤ logEf∼Π0

⎡
⎢
⎢
⎢
⎣

e−ηRn(f,Z
n)

EZ̄n [e−ηRn(f,Z̄n)]

⎤
⎥
⎥
⎥
⎦
,

which, after exponentiating and taking the expectation with respect to Zn ∼ Pn, gives

EZn [exp (Ef∼Πn [−ηRn(f,Z
n
) − logEZ̄n [e−ηRn(f,Z̄

n)
]] − KL(Πn ∥Π0))]

≤ EZn
⎡
⎢
⎢
⎢
⎣
Ef∼Π0

⎡
⎢
⎢
⎢
⎣

e−ηRn(f,Z
n)

EZ̄n [e−ηRn(f,Z̄n)]

⎤
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎦
.

From the Tonelli-Fubini theorem (see e.g. (Dudley, 2002, p. 137)), we can exchange the two outer-
most expectations on the RHS, and so the RHS is at most 1. Using ESI notation, we then have

Ef∼Πn [− logEZ̄n [e−ηRn(f,Z̄
n)

]] ⊴1 Ef∼Πn [ηRn(f,Z
n
)] + KL(Πn ∥Π0).

Using that the Z̄1, . . . , Z̄n are drawn i.i.d. from P and dividing by η ⋅ n then yields

Ef∼Πn [−
1

η
logEZ [e−η(`f (Z)−`φ(f)(Z))

]] ⊴η⋅n Ef∼Πn

⎡
⎢
⎢
⎢
⎢
⎣

1

n

n

∑
j=1

(`f(Zj) − `φ(f)(Zj))
⎤
⎥
⎥
⎥
⎥
⎦

+
1

η
KL(Πn ∥Π0).

Proof (of Proposition 6) Zhang (2006a) showed the first inequality in (17) and (20). The equality
of the first and third terms and the inequality in (17) are “folklore” in the individual sequence-
prediction and MDL communities. For completness we provide a proof.

The two equalities in (17) are easy to see after rewriting the center term as

n ⋅ inf
Π∣∈RAND

ICn,η(Π∣) = −
1

η
sup

Π∈∆(F)

⎧⎪⎪
⎨
⎪⎪⎩

−
n

∑
j=1

Lf(Zj) − KL(Π ∥Π0)

⎫⎪⎪
⎬
⎪⎪⎭

.
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Now, from Legendre duality, we have for some map ϕ ∶ X → R that

sup
ν∈∆(X)

{EX∼ν[ϕ(X)] − KL(ν ∥µ)} = logEX∼µ [eϕ(X)
] ,

and the supremum is achieved by taking ν(dx) = eϕ(dx)
EX∼µ[eϕ(X)]

. This proves the equalities in (17).

To see (18) and (19), observe that for any A ⊂ F , we have

−
1

η
logEf∼Π0 [e

−∑nj=1 Lf (Zj)] = −
1

η
logEf∼Π0 [(1{f∈A} +1{f∉A}) e

−∑nj=1 Lf (Zj)]

≤ −
1

η
logEf∼Π0 [1{f∈A} ⋅e

−∑nj=1 Lf (Zj)] = −
1

η
log Π0(A) −

1

η
logEf∼Π0∣A [e−∑

n
j=1 Lf (Zj)]

≤ −
1

η
log Π0(A) +Ef∼Π0∣A

⎡
⎢
⎢
⎢
⎢
⎣

n

∑
j=1

Lf(Zj)

⎤
⎥
⎥
⎥
⎥
⎦

,

where the last line follows from Jensen’s inequality. Together with the second equality in the
already-established (17), the third line implies (18); the last line implies (19).

For (20), the first inequality is obvious since the infimum over DET is at least the infimum over
RAND. The equality is immediate from the definition of the two-part MDL estimator. The second
inequality follows as a special case of the inequality in (17).

Appendix B. Proofs for Section 4

Proof (of Theorem 10) The Rényi divergence (Van Erven and Harremoës, 2014) of order α is
defined as Dα(p∥q) =

1
α−1 log ∫ p

αq1−αdµ, so that, for 0 < α < 1, with η = (1 − α)η̄,

Dα(pf∗,η̄∥pf,η̄) =
1

α − 1
log∫ p(z)

e−αη̄Lf∗ ⋅ e−(1−α)η̄Lf

(E[e−η̄Lf∗(Z)])α(E[e−η̄Lf (Z)])1−α
dµ

=
1

α − 1
log∫ p(z)

e−(1−α)η̄Lf

(E[e−η̄Lf (Z)])1−αdµ = −
η̄

η
(logE[e−ηLf ] −

η

η̄
logE[e−η̄Lf (Z)

])

= η̄EANN(η)
[Lf ] + logE[e−η̄Lf (Z)

] ≤ η̄EANN(η)
[Lf ],

where we used the η̄-central condition. Van Erven and Harremoës (2014) show that the squared
Hellinger distance between two densities p and q is always bounded by their Rényi divergence of
order 1/2 and also that the latter is bounded by the Rényi divergence of order 0 < α < 1/2 via
D1/2(p∥q) ≤

1−α
α Dα(p∥q), so that we get

d2
η̄(f, f

′
) ≤

1

η̄
⋅
1 − α

α
⋅ η̄EANN(η)

[Lf ] =
η

η̄ − η
EANN(η)

[Lf ].

The result is now immediate from Lemma 5.

Proof (of Proposition 11, cont.) We use the familiar rewrite of the KL divergence EZ∼Pf∗ [Lf ] =
D(f∗∥f) as EZ∼Pf∗ [Lf ] = E[Lf + S], with S = (pf(Z)/pf∗(Z)) − 1, where as is well-known,
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Lf + S is nonnegative on Z . Using this in the second inequality below gives:

EZ∼Pf∗ [Lf ∨0] = EZ∼Pf∗ [1{Lf≥0}(Lf + S)] −EZ∼Pf∗ [1{Lf≥0} S] ≤ EZ∼Pf∗ [Lf ] +EZ∼Pf∗ [∣S∣]

= EZ∼Pf∗ [Lf ] + ∫ pf∗ ∣
pf − pf∗

pf∗
∣dµ(z) ≤D(f∗∥f) + ∫ ∣pf − pf∗ ∣dµ,

and the result follows by Pinsker’s inequality.

Appendix C. Proofs for Section 5 and Example 12

C.1. Proof of Lemma 34, extending Lemma 13

Below we state and prove Lemma 34 which generalizes Lemma 13 in the main text in that it allows
general comparators φ(f), as introduced above Lemma 33. This extension is pivotal for our results
in Section 6 involving the GRIP.

Lemma 34 Let η̄ > 0. Let φ be any comparator map φ such that for any given f , φ(f) satisfies
E[`φ(f)] ≤ E[`f ]. Assume that the strong η̄-central condition is satisfied with respect to comparator
φ for some fixed f ∈ F , i.e.,

`f − `φ(f) ⊴η̄ 0. (60)

Furthermore assume that the (u, c)-witness condition holds for this f , relative to φ(f), for some
constants u > 0 and c ∈ (0,1], i.e.,

cE[Lf ] ≤ E[(`f − `φ(f)) ⋅ 1{`f−`φ(f)≤u}]. (61)

Then for all η ∈ (0, η̄)

E[Lf ] ≤ cu ⋅E
HE(η) [`f − `φ(f)] ≤ cu ⋅E

ANN(η) [`f − `φ(f)] , (62)

with cu ∶= 1
c
ηu+1
1− η

η̄

. Moreover, suppose that the (τ, c)-witness condition holds for a non-increasing

τ and c as in Definition 12, for all f ∈ F , relative to comparator φ(⋅), i.e., E[(`f − `φ(f)) ⋅

1{`f−`φ(f)≤τ(E[`f−`φ(f)])}] ≥ cE[Lf ]. For all f ∈ F , all η ∈ (0, η̄), all ε > 0, we have:

E[Lf ] ≤ ε∨ cτ(ε) ⋅E
HE(η) [`f − `φ(f)] ≤ ε∨ cτ(ε) ⋅E

ANN(η) [`f − `φ(f)] . (63)

Proof
Proof of (62). Define L′f ∶= `f − `φ(f). For any η ∈ [0, η̄], define:

hf,η ∶=
1

η
(1 − e−ηL

′
f ) Sf,η ∶= hf,η − hf,η̄ Hf,η ∶= EHE(η)

[L′f ] = E[hf,η].

It is easy to verify that the map η ↦ hf,η is non-increasing, and hence Sf,η is a positive random
variable for any η ∈ [0, η̄]. It also is easy to verify that limη↓0 hf,η = L′f . We thus can define
hf,0 = L

′
f and Sf,0 = L′f − hf,η̄ and hence can rewrite the excess risk of f (with respect to φ(f)) as

E[L′f ] = E[hf,0 − hf,η̄ + hf,η̄] = E[Sf,0] +Hf,η̄.
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Splitting up the expectation into two components, we have

E[Sf,0 ⋅ 1{L′
f
≤u}] +E[Sf,0 ⋅ 1{L′

f
>u}] +Hf,η̄.

Now, from Lemma 35 (stated and proved immediately after this proof), the positivity of Sf,η, and
using C̄ ∶= Cη̄,η,u to avoid cluttering notation, we have

E[L′f ] ≤ C̄E[Sf,η ⋅ 1{L′
f
≤u}] +E[Sf,0 ⋅ 1{L′

f
>u}] +Hf,η̄ ≤ C̄E[Sf,η] +E[Sf,0 ⋅ 1{L′

f
>u}] +Hf,η̄

= C̄ (Hf,η −Hf,η̄) +E[Sf,0 ⋅ 1{L′
f
>u}] +Hf,η̄ = C̄Hf,η − (C̄ − 1)Hf,η̄ +E[Sf,0 ⋅ 1{L′

f
>u}].

We observe that Hf,η̄ ≥ 0 since Hf,η̄ =
1
η̄ E [1 − e−η̄L

′
f ] ≥ 0, where the inequality is implied by the

strong η̄-central condition (i.e. E [e−η̄L
′
f ] ≤ 1). Therefore, since it always holds that C̄ ≥ 1 we have

E[L′f ] ≤ C̄Hf,η +E[Sf,0 ⋅ 1{L′
f
>u}]. (64)

Next, we claim that E[Sf,0 ⋅ 1{L′
f
>u}] ≤ E[L′f ⋅ 1{L′

f
>u}]. To see this, observe that Sf,0 = L′f +

1
η̄ (e−η̄L

′
f − 1), and that the second term is negative on the event L′f > u. We thus have

E[L′f ] −E[L′f ⋅ 1{L′
f
>u}] ≤ C̄Hf,η,

which can be rewritten as

E[L′f ⋅ 1{L′
f
≤u}] ≤ C̄Hf,η, (65)

Now, since we assume (61), the first inequality in (62) is proved, and the second then follows from
(12):

E[Lf ] ≤
C̄

c
Hf,η.

Proof of (63). Fix arbitrary f ∈ F . We know that for this particular f , either E[Lf ] ≤ ε in which
case there is nothing to prove, or E[Lf ] > ε. Then for this f , the (u, c)-witness condition holds
with u = τ(E[Lf ]) ≤ τ(ε). But then the result follows as above.

Lemma 35 (“Bounded Part” Lemma) For u, η̄ > 0 and η ∈ [0, η̄), we have

E[Sf,0 ⋅ 1{`f−`φ(f)≤u}] ≤ Cη̄,η,uE[Sf,η ⋅ 1{`f−`φ(f)≤u}],

where Cη̄,η,u ∶=
ηu+1
1− η

η̄

.

Proof It is sufficient to show that on the set {`f − `φ(f) ≤ u}, it holds that Sf,0 ≤ CSf,η for some
constant C. This may be rewritten as wanting to show, for η0 → 0:

1

η0
(1 − e−η0(`f−`φ(f))) −

1

η̄
(1 − e−η̄(`f−`φ(f))) ≤ C (

1

η
(1 − e−η(`f−`φ(f))) −

1

η̄
(1 − e−η̄(`f−`φ(f)))) .
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Letting r = e−η̄(`f−`φ(f)), this is equivalent to showing that

1

η̄
(

1

η0/η̄
(1 − rη0/η̄) − (1 − r)) ≤

C

η̄
(

1

η/η̄
(1 − rη/η̄) − (1 − r)) .

Now, for any η ≥ 0, define7 the function gη as gη(r) = 1
η (1 − r

η) − (1 − r). From Lemma 36, for
any η′ ≥ 0, if r ≥ 1

V for some V > 1 then g0(r) ≤
1

1−η′ (η
′ logV + 1)gη′(r).

Applying this inequality, taking η0 → 0 and η′ ∶= η
η̄ , and observing that on the set {`f−`φ(f) ≤ u}

we may take V = eη̄u > 1, we see that whenever `f − `φ(f) ≤ u,

(
1

η0
(1 − rη0) − (1 − r)) ≤

1

1 − η′
(η′η̄u + 1) (

1

η′
(1 − rη

′
) − (1 − r)) .

Thus, Sf,0 ≤ Cη̄,η,uSf,η indeed holds for Cη̄,η,u =
ηu+1
1− η

η̄

.

1 2 3 4

3

2

1

0

1

2

3
η= 0 (−log)

η= 1/4

η= 1/2

η= 1

Figure 2: The function r ∶→ η−1(1 − rη) for various values of r. gη(r) is the difference of the line
for η at r and the line for η = 1 at r, which is always positive.

Lemma 36 Let 0 ≤ η′ < η < 1 and 1 < V < ∞. Define gη(r) ∶= η−1 (1 − rη) − (1 − r), a positive
function. Then for η′ > 0 and r ≥ 1

V :

gη′(r) ≤ Cη′←η(V )gη(r),

where Cη′←η(V ) ≤ ((η′)−1 − 1)/(η−1 − 1), and

lim
η′↓0

gη′(r) ≤ C0←η(V )gη(r),

where C0←η(V ) =
logV −(1−V −1)

1
η
(1−V −η)−(1−V −1) ≤

η
1−η logV + 1

1−η .

7. Note that the gη used here is not a GRIP.
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Proof Let 0 ≤ η′ < η. We will prove that, for all r ≥ 1
V , we have gη′(r) ≤ C ⋅ gη(r) for some

constant C. Hence it suffices to bound

hη′,η(r) ∶=
gη′(r)

gη(r)
=

(η′)−1(1 − rη
′
) − (1 − r)

η−1(1 − rη) − (1 − r)
.

We can extend the definition of this function to η′ = 0 and r = 1 so that it becomes well-defined for
all r > 0, 0 ≤ η′ < η < 1: (0)−1(1 − r0) is defined as limη′↓0(η

′)−1(1 − rη
′
) = − log r. hη′,η(1) is set

to limr↑1 hη′,η(r) = limr↓1 hη′,η(r) which is calculated using L’Hôpital’s rule twice, together with
the fact that for 0 ≤ η ≤ 1 (note η = 0 is allowed), g′η(r) = −r

η−1 + 1, g′′η (r) = (1 − η)rη−2. Then,
because gη(1) = g0(1) = g

′
η(1) = g

′
0(1) = 0, we get:

hη′,η(1) ∶= lim
r↓1

gη′(r)/gη(r) = lim
r↓1

g′η′(r)/g
′
η(r) = lim

r↓1
g′′η′(r)/g

′′
η (r) =

1 − η′

1 − η
.

We have limr→∞ hη′,η(r) = 1, and we show below that hη′,η(r) is strictly decreasing in r for each
0 ≤ η′ < η < 1, so the maximum value is achieved for the minimum r = 1/V . We have hη′,η(1/V ) ≤

hη′,η(0) = (η′−1 − 1)/(η−1 − 1) and h0,η(1/V ) = (logV −(1−V −1))/(η−1(1−V −η)− (1−V −1)).
The result follows by defining Cη′←η(V ) = hη′,η(1/V ). It only remains to show that hη′,η(r) is
decreasing in r and that the upper bound on C0←η(V ) stated in the lemma holds.

Proof that h is decreasing: The derivative of h ≡ hη′,η for fixed 0 ≤ η′ < η < 1 is given by
h′η′,η(r) = r

−1 ⋅ s(r), where

s(r) =
(−rη

′
+ r) ⋅ gη(r) + (rη − r) ⋅ gη′(r)

gη(r)2
. (66)

Although we tried hard, we found neither a direct argument that h′ ≤ 0 or that h′′ > 0 (which would
also imply the result in a straightforward manner). We resolve the issue by relating h to a function
f which is easier to analyze. (66) shows that for r > 0, r ≠ 1, h′(r) = 0, i.e., h reaches an extremum,

iff s(r) = 0, i.e., iff the numerator in (66) is 0, i.e., iff
gη′(r)
gη(r) = rη

′−r
rη−r , i.e., iff

h(r) = f(r), where f(r) ∶=
rη

′−1 − 1

rη−1 − 1
.

We can extend f to its discontinuity point r = 1 by using L’Hôpital’s rule similar to its use above,
and then we find that f(1) = h(1); similarly, we find that the discontinuities of f ′(r) and h′(r) at
r = 1 are also removable, again by aggressively using L’Hôpital, which gives

f ′(1) =
1

2
⋅
1 − η′

1 − η
(η′ − η) , h′(1) =

1

3
⋅
1 − η′

1 − η
(η′ − η) , (67)

and we note that both derivatives are < 0 and also that there is L < 1,R > 1 such that

h < f on (L,1) ; h > f on (1,R). (68)

Below we show that f is strictly decreasing on (0,∞). But then h cannot have an extremum on
(0,1); for if it had, there would be a point 0 < r0 < 1 with h′(r0) = 0 and therefore h(r0) = f(r0),
so that, since f ′(r0) < 0, h lies under f in an open interval to the left of r0 and above f to the
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right of r0. But by (68), this means that there is another point r1 with r0 < r1 < 1 at which h and
f intersect such that h lies above f directly to the left of r1. But we already showed that at any
intersection, in particular at r1, h′(r1) = 0. Since f ′(r1) < 0, this implies that h must lie below f
directly to the left of r1, and we have reached a contradiction. It follows that h has no extrema on
(0,1); entirely analogously, one shows that h cannot have any extrema on (1,∞). By (67), h′(r)
is negative in an open interval containing 1, so it follows that h is decreasing on (0,∞).

It thus only remains to be shown that f is strictly decreasing on (0,∞). To this end we consider
a monotonic variable transformation, setting y = rη−1 so that rη

′−1 = y(1−η
′)/(1−η) and, for a > 1,

define fa(y) = (ya − 1)/(y − 1). Note that with a = (1 − η′)/(1 − η), fa(rη−1) = f(r). Since
0 < η < 1, y is strictly decreasing in r, so it is sufficient to prove that, for all a corresponding to
some choice of 0 ≤ η′ < η < 1, i.e., for all a > 1, fa is strictly increasing on y > 0. Differentiation
with respect to y gives that fa is strictly increasing on interval (a, b) if, for all y ∈ (a, b),

ua(y) ≡ ay
a
− ya + 1 − aya−1

> 0.

Straightforward differentiation and simplification gives that u′a(y) = ay
a−1(a − 1)(1 − y−1) which

is strictly negative for all y < 1 and strictly positive for y > 1. Since trivially, ua(1) = 0, it follows
that ua(y) > 0 on (0,1) and ua(y) > 0 on (1,∞), so that fa is strictly increasing on (0,1) and on
(1,∞). But then fa must also be strictly increasing at r = 1, so fa is strictly increasing on (0,∞),
which is what we had to prove.

Proof of upper bound on C0←η(V ): The right term in s(r) as given by (66) is positive for r < 1,
and gη′(x) > gη(x), so setting t(r) to s(r), but with gη′(r) in the right term in the numerator
replaced by gη(r), i.e.,

t(r) ∶=
(−rη

′
+ r) ⋅ gη(r) + (rη − r) ⋅ gη(r)

gη(r)2
=
−rη

′
+ rη

gη(r)
,

we have t(r) ≤ s(r) for all r ≤ 1. We already know that hη′,η is decreasing, so that s(r) ≤ 0 for all
r, so we have t(r) ≤ s(r) ≤ 0 for all r ≤ 1. In particular, this holds for the case η′ = 0, for which
t(r) simplifies to t(r) = (−1+ rη)/gη(r) = −(1− r

η)/(η−1(1− rη)−(1− r)). A simple calculation
shows that (a) limr↓0 t(r) = −1/(η−1 − 1) = −η/(1 − η) and (b) t(r) is increasing on 0 < r < 1 for
all 0 < η < 1.

Now define h̃ by setting h̃(r) = (1/(1 − η)) ⋅ (1 − η log r) for 0 < r ≤ 1. Then h̃′(r) =

−(η/(1−η))r−1 ≤ t(r)r−1 ≤ s(r)r−1 = h′0,η(r) ≤ 0 by all the above together. Since h̃(1) = h0,η(1),
and for r < 1, h0,η is decreasing but h̃ is decreasing even faster, we must have h̃(r) ≥ h0,η(r) for
0 < r < 1. We can thus bound h0,η(1/V ) by h̃(1/V ), and the result follows.

C.2. Proof of Lemma 16

Proof Markov’s inequality implies that for all f ∈ F , Pr(eδLf > u) < Mδ

u for any u ≥ 0. Therefore,
for some map τ ∶ R+ → R+ to be set later:

E [Lf ⋅ 1{Lf>τ(E[Lf ])}] = ∫
∞

0
Pr(Lf ⋅ 1{Lf>τ(E[Lf ])} > t)dt =

∫

∞

τ(E[Lf ])
Pr(Lf > t)dt = ∫

∞

τ(E[Lf ])
Pr(eδLf > eδt)dt ≤ ∫

∞

τ(E[Lf ])
Mδe

−δtdt =
Mδ

δ
e−δτ(E[Lf ]).

(69)
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Taking τ ∶ x ↦ 1∨
log

2Mδ
δx

δ , the last line above is bounded by 1
2 E[Lf ], and so the (τ, c)-witness

condition holds with c = 1/2.

C.3. Proofs related to heavy-tailed regression

We start with some general facts. For squared loss, the excess loss can be written as (abbreviating
f(X) and f∗(X) to f and f∗, resp.),

Lf = (f(X) − f∗(X)) ⋅ (−2Y + f(X) + f∗(X)) (70)

= (f − f∗) ⋅ ((f − f∗) + 2(f∗ − Y )) (71)

= (f − f∗)2
+ 2(f∗ − Y )(f − f∗). (72)

Now, recall that in both Examples 7 and 12, we assumed that the risk minimizer f∗ overF continues
to be a minimizer when taking the minimum risk over the convex hull of F . This implies that for
all f ∈ F ,

E (f∗(X) − Y )(f(X) − f∗(X))] ≥ 0, (73)

To see this, we observe that if we instead consider the function class conv(F), then f∗ is still
a minimizer and (73) holds for all f ∈ conv(F) from Mendelson (2017a) (see the text around
equation (1.3) therein).

But now (73) with (72) implies that, under our assumptions,

E [(f(X) − f∗(X))
2] ≤ E[Lf ]. (74)

Proof (of Proposition 18) Let u > 0 be a to-be-determined constant. Then

E [Lf ⋅ 1{Lf>τ(E[Lf ])}] ≤ E [Lf ⋅
Lf

τ(E[Lf ])
⋅ 1{Lf≥0}] =

1

τ(E[Lf ])
E [L2

f ⋅ 1{Lf≥0}] ≤
1

τ(E[Lf ])
E [L2

f ] ≤
B

u

(E [Lf ])
β

(E[Lf ])β−1
=
B

u
E[Lf ],

and the result follows.

Proof (of Proposition 19) To see that a Bernstein condition holds if E[Y 2 ∣ X] ≤ C a.s. and
∣f(X)∣ ≤ r almost surely, observe that from (70),

L2
f ≤ 2(f(X) − f∗(X))

2 (4Y 2
+ (f(X) − f∗(X))

2) ,

and hence

E [L2
f ] ≤ 8 (E [(f(X) − f∗(X))

2 E[Y 2
∣X]] + r2 E [(f(X) − f∗(X))

2])

≤ 8(C + r2
)E [(f(X) − f∗(X))

2] ,

Invoking (74), we see that a Bernstein condition does indeed hold:

E [L2
f ] ≤ 8(C + r2

)E[Lf ].
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Proof (of claim in Example 12) From (71), Cauchy-Schwarz, and our assumption,

E[L2
f ] ≤

√
E[(f(X) − f∗(X))4] ⋅

√
C ≤ AE[(f(X) − f∗(X))

2
] ⋅

√
C ≤ AE[Lf ] ⋅

√
C, (75)

where the final inequality follows from (74) and

C = E[((f − f∗) + 2(Y − f∗))4
] ≤ E[(2(f − f∗)2

+ 8(Y − f∗)2
)

2
]

≤ E[8(f − f∗)4
+ 32(Y − f∗)4

] ≤ 8A2 E[(f − f∗)2
]
2
+ 32E[`2f∗]

≤ 8A2 E[Lf ]
2
+ 32E[`2f∗] ≤ 8A2c2

0 + 32E[`2f∗],

where the third and fifth inequality follow from our assumptions and the fourth follows from (74).
This quantity is bounded, so (75) implies the Bernstein condition.

Appendix D. Proofs for Section 6.1

D.1. Proof of Lemma 21

We first prove (47) from the main text: suppose that (P, `,F) satisfies the v-central condition. We
then have for all f ∈ F ,

E [e
v(ε)⋅(`f∗ε −`f )] = E [ev(ε)⋅(`f∗−`f )] ⋅ e−v(ε)ε ≤ 1,

where the inequality follows because (P, `,F) satisfies the v-central condition. Now suppose fur-
ther that (P, `,{f} ∪ {f∗}) satisfies the (u, c)-witness condition. This gives:

cE[Lf ] ≤ E[(`f − `f∗) ⋅ 1{`f−`f∗≤u}] = E[(`f − `f∗) ⋅ 1{`f−`f∗ε ≤u+ε}
]

= E[(`f − (`f∗ε + ε)) ⋅ 1{`f−`f∗ε ≤u+ε}
] ≤ E[(`f − `f∗ε ) ⋅ 1{`f−`f∗ε ≤u+ε}

],

whence the (u + ε, c) witness condition holds for (P, `,{f, f∗ε }). By this fact and (47) (proven
above), we can apply Lemma 34 (our extension of Lemma 13 from the main text), with φ(f) set to
f∗ε (i.e. φ(f) does not depend on f ). The result, (46), follows.

Appendix E. Proofs for Section 6.2

E.1. Proof of Propositions 24–27

Proof (of Proposition 24) Consider the learning problem (P, ˜̀, F̃) with

F̃ ∶= {mη
Q ∶ Q ∈ ∆(F)} ∪ {mη

F}

and ˜̀
f̃ ∶= f̃ for f̃ ∈ F̃ .

We will show that the strong η-PPC condition (Van Erven et al., 2015) holds for this problem
with mη

F taking the role of the optimal action. That is,

E [mη
F] ≤ inf

Q̃∈∆(F̃)
E [−

1

η
logEf̃∼Q̃ [e−η

˜̀
f̃ ]] . (76)
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In one of their main results, (Van Erven et al., 2015, Theorem 3.10 and Corollary 3.11), again
extending an argument of Li (1999), show that the strong η-PPC condition implies the strong η-
central condition for any tuple (P, `, F̃) under the sole assumption that F̃ contains a risk minimizer,
i.e., there exists f ′ ∈ F̃ with minf∈F̃ E[`f ] = E[`f ′]. But we construct F̃ so that this holds, since it
contains mη

F . Thus, if (76) indeed holds (as we will soon show), then (P, ˜̀, F̃) also satisfies the the
strong η-central condition. But this implies that, for all f̃ ∈ F̃ ,

E [e−η(
˜̀
f̃−m

η
F)

] ≤ 1.

The statement above holds in particular for any f̃ = mη
Q, which includes the special case of the

Dirac mix losses of the form mη
δf
= `f for any f ∈ F , and hence we have, for all f ∈ F ,

E [e−η(`f−m
η
F)

] ≤ 1 for all f ∈ F ,

which is what we wanted.
Let us now prove inequality (76). We start with the RHS of (76) and, via a sequence of lower

bounds, will arrive at the LHS. First, observe that the RHS can be rewritten as

inf
α∈[0,1]

inf
Q̃∈∆(∆(F))

E [−
1

η
log (αe−ηm

η
F + (1 − α)EQ∼Q̃ [e−ηm

η
Q])]

= inf
α∈[0,1]

inf
Q∈∆(F)

E [−
1

η
log (αe−ηm

η
F + (1 − α)mη

Q)] .

Next, for each α and Q, we introduce a function Γα,Q∶R→ R, defined as

Γα,Q(x) = −
1

η
log (αe−ηx + (1 − α)mη

Q) ,

so that the last line in the above display may be rewritten as

inf
α∈[0,1]

inf
Q∈∆(F)

E [Γα,Q(m
η
F)] .

Now, as we show in Appendix G, there exists a sequence (Qn)n≥1 such that mη
Qn

converges to
mη
F in L1(P ). For any n ≥ 1, we have

E [Γα,Q(m
η
F)] = E [Γα,Q(m

η
Qn

)] +E [Γα,Q(m
η
F) − Γα,Q(m

η
Qn

)] (77)

Note that Γα,Q is 1-Lipschitz, since (for any choice of α and Q),

dΓα,Q

dx
Γα,Q(x) = −

1

η

−ηαe−ηx

αe−ηx + (1 − α)e−ηm
η
Q

=
αe−ηx

αe−ηx + (1 − α)e−ηm
η
Q

∈ [0,1].

Consequently, it holds that (77) is lower bounded by

E [Γα,Q(m
η
Qn

)] −E [∣Γα,Q(m
η
F) − Γα,Q(m

η
Qn

∣] ≥ E [Γα,Q(m
η
Qn

)] −E [∣mη
F −m

η
Qn

∣] .
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Next, since mη
Qn

converges to mη
F in L1(P ), taking the limit as n → ∞, the RHS of the last line

above converges to E [Γα,Q(m
η
Qn

)]. Thus, we have shown that

E [Γα,Q(m
η
F)] ≥ lim

n→∞
E [Γα,Q(m

η
Qn

)] ,

and so:

inf
α∈[0,1]

inf
Q∈∆(F)

E [−
1

η
log (αe−ηm

η
F + (1 − α)e−ηm

η
Q)]

≥ inf
α∈[0,1]

inf
Q∈∆(F)

lim
n→∞

E [−
1

η
log (αe−ηm

η
Qn + (1 − α)e−ηm

η
Q)]

= inf
α∈[0,1]

inf
Q∈∆(F)

lim
n→∞

E [mη
αQn+(1−α)Q]

≥ inf
α∈[0,1]

inf
Q∈∆(F)

lim
n→∞

E [mη
F]

= E [mη
F] ,

where we used that the quantity inside limn→∞ is equal to E[mη
Q′] for some Q′ ∈ ∆(F), and hence

by definition not smaller than E[mη
F ]. Thus, inequality (76) indeed holds.

Proof (of Proposition 26) Fix η > 0 and let u be as in (50). For each f ∈ F , let f ′ be defined by
`f ′ = `f if `f ≤ `f∗ + u and `f ′ = `f∗ otherwise and let F ′ be the resulting model. Then mη

F ′ is
the GRIP relative to η and the class F ′; from Appendix G this GRIP is guaranteed to exist. By
definition, for every δ > 0 there is a distribution Q′ on F ′ such that EZ∼P [m

η
Q′ −m

η
F ′] ≤ δ. Define

f○ such that it has constant loss, i.e., for all z ∈ Z , `f○(z) ∶= E[`f∗]. By using − logx ≥ 1 − x and
we have for each z ∈ Z , for some η′ ∈ (0, η):

mη
Q′ − `f○ = −

1

η
logEf ′∼Q′ e−η(`f ′−`f○) ≥

1

η
(1 −Ef ′∼Q′ e−η(`f ′−`f○))

= Ef ′∼Q′ [`f ′ − `f○] −
1

2
ηE(`f ′ − `f○)

2e−η
′(`f ′−`f○)

≥ Ef ′∼Q′ [`f ′ − `f○] −
1

2
eη`f○ ⋅ ηEf ′∼Q′(`f ′ − `f○)

2.

Now use that

Ef ′∼Q′ [(`f ′ − `f○)
2] = Ef ′∼Q′ [((`f ′ − `f∗) + (`f∗ − `f○))

2
]

≤ 2 (Ef ′∼Q′ [(`f ′ − `f∗)
2] + (`f∗ − `f○)

2)

≤ 2 (Ef ′∼Q′ [1{`f ′>`f∗}(`f ′ − `f∗)
2
+ 1{`f ′≤`f∗}(`f ′ − `f∗)

2
] + (`f∗ − `f○)

2
)

≤ 2u2
+ 2`2f∗ + (`f∗ − `f○)

2.
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Combining this with the previous inequality and taking the expectation with respect to Z yields

EZ∼P [mη
F ′ − `f∗] = EZ∼P [mη

Q′ − `f○] − δ

≥ EZ∼P Ef ′∼Q′ [`f ′ − `f∗] −
1

2
ηeη`f○ ⋅ (2u2

+EZ∼P [2`2f∗ + (`f∗ − `f○)
2]) − δ

≥ EZ∼P Ef ′∼Q′ [(`f ′ − `f∗) ⋅ 1{`f ′−`f∗≤u}] −
1

2
ηeηE[`f∗ ] ⋅ (2u2

+ 3E[`2f∗]) − δ

= Ef∼QEZ∼P [(`f − `f∗) ⋅ 1{`f−`f∗≤u}] −
1

2
ηeηE[`f∗ ] ⋅ (2u2

+ 3E[`2f∗]) − δ

≥ −
1

2
ηeηE[`f∗ ] ⋅ (2u2

+ 3E[`2f∗]) − δ,

where Q ∈ ∆(F) is the distribution defined by taking dQ(f) = dQ′(f ′) (where we make use of the
bijection between F and F ′ from the definition of `f ′ in terms of f , for all f ′ ∈ F), and the final
inequality invokes (50). We now take η ≤ 1/E[`f∗], yielding

EZ∼P [`f∗ −m
η
F ′] ≤ η ⋅ e ⋅ (u

2
+

3

2
E[`2f∗]) + δ. (78)

The result now follows from Proposition 27, using that the reasoning above holds for every δ > 0.

Proof (of Proposition 27) Define the set F ′ such that for each f ∈ F , there is an f ′ ∈ F with
`′f = `f ′ and vice versa. Note that we must have:

EZ∼P [mη
F ′] ≤ EZ∼P [mη

F] . (79)

To see this, assume for contradiction that there exists some ε > 0 such that EZ∼P [mη
F] ≤ EZ∼P [mη

F ′]−
ε. Let (Qj)j≥1 be a sequence for which EZ∼P [m

η
Qj

] ≤ EZ∼P [m
η
F ] +

ε
2 . We will make use of the

fact that, for each Q′ ∈ ∆(F ′), mη
Q′ ≤m

η
Q since for each f ′ the corresponding f has, on all z, either

the same or larger loss. This setup then implies the following contradiction:

EZ∼P [m
η
F ′] ≤ EZ∼P [m

η
Q′
j
] ≤ EZ∼P [m

η
Qj

] ≤mη
F +

ε

2
≤mη

F ′ −
ε

2
.

Now, since by assumption `f∗ ≡ `(f∗)′ , (79) implies that

EZ∼P [`f∗ −m
η
F] ≤ EZ∼P [`f∗ −m

η
F ′]

which implies the statement of the proposition.

E.2. Proof of Lemma 28

The proof of Lemma 28 is based on relating the loss mη̄
F of the GRIP comparator appearing in that

lemma to the loss of a related “dynamic” comparator mη̄
f (which we will call “mini-GRIP”) that

varies with f . This requires us to first re-define the witness condition for such dynamic comparators,
relate this dynamic witness condition to the standard witness condition, and relate the GRIP loss to
the mini-GRIP loss; this is all achieved in the following subsection.

58



FAST RATES FOR GENERAL UNBOUNDED LOSS FUNCTIONS:FROM ERM TO GENERALIZED BAYES

E.2.1. WITNESS PROTECTION AND MINI-GRIP

Assumption 1 (Advanced Empirical Witness of Badness) Let M ≥ 1 be a parameter of the as-
sumption. We say that (P, `,F) satisfies the empirical witness of badness condition (abbreviated as
witness condition) with respect to dynamic comparator φ if there exist constants u > 0 and c ∈ (0,1]
such that for all f ∈ F ,

E [(`f − `φ(f)) ⋅ 1{`f−`φ(f)≤u(1∨(M−1 E[Lf ]))}] ≥ cE[`f − `φ(f)]. (80)

If we modify the RHS of (80) so that the term E[`f − `φ(f)] is replaced by the potentially smaller
E[`f−`f∗], then we call the condition the weak empirical witness of badness condition (abbreviated
as weak witness condition).

In practice, we will assume only that the witness condition holds for the static comparator
ψ ∶ f ↦ f∗ (so named because the comparator does not vary with f ), as can already be handled
through the simpler witness condition of Definition 12. However, because the central condition
may not necessarily be satisfied with comparator f∗, it is beneficial if a witness condition holds for
a suitably-related comparator for which the central condition does hold. The ideal candidate for this
comparator turns out to be an f -dependent pseudo-loss, mη

f , an instance of a GRIP (see Definition
23).

The main motivation for our introducing the GRIP is that (P, `,F) with comparatormη
F satisfies

the η-central condition (from Proposition 24). The GRIP arises as a generalization of the reversed
information projection of Li (1999), which is the special case of the above with η = 1, log loss, andF
a class of probability distributions. In this case, the GRIP, now a reversed information projection, is
the (limiting) distribution P ∗ which minimizes the KL divergence KL(P ∥P ∗) over the convex hull
of P; note that P ∗ is not necessarily in conv(P). Li (1999, Theorem 4.3) proved the existence of
the reversed information projection; for completeness, in Appendix G we present a lightly modified
proof of the existence of the GRIP.

As mentioned above, in our technical results exploiting both the central and witness conditions,
we will need not only the “full” GRIP but also a “mini-grip” mη

f , for each f , defined by replacing
F with {f∗, f} in Definition 23. The mini-grip with respect to f then has the simple, characterizing
property of satisfying

E[mη
f ] = inf

α∈[0,1]
E [−

1

η
log ((1 − α)e−η`f∗ + αe−η`f )] .

Also, as will be used to critical effect in the application of Lemma 34, for each f the learning
problem (P,{f∗, f}, `) with comparator mη

f satisfies the η-central condition.
Although up until now it has sufficed to refer to GRIPs only via their loss, for convenience of

notation we now let gηF denote the pseudo-action obtaining the GRIP loss mη
F , and we let gηf denote

the pseudo-action obtaining the mini-GRIP loss mη
f . It should be emphasized that neither gηF nor gηf

need be well-defined; this is of no consequence, however, as we will use both only via their losses
mη
F and mη

f , which are well-defined.
We now show that if the witness condition holds with respect to the static comparator ψ ∶ f ↦

f∗, then the weak witness condition holds with respect to the comparator φ ∶ f ↦ gηf .

Lemma 37 (Witness Protection Lemma) Assume that (P, `,F) satisfies the witness condition
with static comparator ψ ∶ f ↦ f∗ and constants (M,u, c). Then, for any η > 0, (P, `,F) satisfies
the weak witness condition with dynamic comparator φ ∶ f ↦ gηf with the same constants (M,u, c).
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Proof (of Lemma 37 (Witness Protection Lemma)) Let f be arbitrary. For brevity we define
u′ ∶= u(1∨(M−1 E[Lf ])). Observe that

E [(`f −m
η
f) ⋅ 1{`f−mηf>u′}] ≤ E [(`f − `f∗) ⋅ 1{`f−`f∗>u′}] .

Rewriting, we have

E[`f −m
η
f ] −E [(`f −m

η
f) ⋅ 1{`f−mηf≤u′}] ≤ E[Lf ] −E [(`f − `f∗) ⋅ 1{`f−`f∗≤u′}] ,

which we rearrange as

E [(`f −m
η
f) ⋅ 1{`f−mηf≤u′}] ≥ E [(`f − `f∗) ⋅ 1{`f−`f∗≤u′}] +E[`f −m

η
f ] −E[Lf ]

= E [(`f − `f∗) ⋅ 1{`f−`f∗≤u′}] +E[`f∗ −m
η
f ]

≥ E [(`f − `f∗) ⋅ 1{`f−`f∗≤u′}] .

From the assumed witness condition with static comparator ψ ∶ f ↦ f∗, the RHS is lower bounded
by cE[Lf ], and so we have established the weak witness condition with dynamic comparator φ and
the same constants (M,u, c).

From Hellinger mini-grip to GRIP

Lemma 38 For any η > 0 and f ∈ F ,

EHE(η)
[`f −m

η
f] ≤ EHE(η/2) [`f −m

η
F] . (81)

Proof Observe that

1

η/2
(1 −E [e−

η
2
(`f−mηF)

]) =
1

η/2
(1 −E [e−

η
2
(`f−mηf+m

η
f
−mηF)

])

≥
1

η/2
(1 −

1

2
E [e−η(`f−m

η
f
)
] −

1

2
E [e−η(m

η
f
−mηF)

])

≥
1

η/2
(

1

2
−

1

2
E [e−η(`f−m

η
f
)
]) =

1

η
(1 −E [e−η(`f−m

η
f
)
]) ,

where the first inequality follows from Jensen’s and for the second inequality we use that, as we
will now show, E [e−η(m

η
f
−mηF)

] ≤ 1. To show that this is indeed the case, recall that mη
f =

− 1
η log ((1 − α)e−η`f∗ + αe−η`f ). Using this representation we find:

E [e−η(m
η
f
−mηF)

] = (1 − α)E [e−η(`
∗
f−m

η
F)

] + αE [αe−η(`f−m
η
F)

] ≤ 1.

Next, we chain 1−x ≤ − logx, Lemma 38, and Lemma 34 to obtain a bound that we will use in
the proofs of Theorems 29 and 31.
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E.3. Actual Proof of Lemma 28

Let f ∈ F . Let u > 0 and c ∈ (0,1] be constants for which E [Lf ⋅ 1{Lf≤u}] ≥ cE[Lf ], i.e., the
(u, c)-witness condition holds. Below we show that for all η ∈ (0, η̄2)

E[Lf ] ≤ c
′
2uE

ANN(η) [`f −m
η̄
F] , (82)

with c′2u =
1
c

2ηu+1

1− 2η
η̄

.

Proof of (82). We have from (12) and Lemma 38 that

EANN(η) [`f −m
η̄
F] ≥ EHE(η) [`f −m

η̄
F] .

Now Lemma 37 establishes the weak witness condition with respect to comparator gη̄f , and from

Proposition 24 this comparator further satisfies E [e−η̄(`f−m
η̄
f
)
] ≤ 1, so that we may apply Lemma 34

with φ(f) = gη̄f to further lower bound the above by 1
c′2u

E[Lf ].

E.4. Proof of Theorem 29

Theorem 29 now follows easily from Lemma 28: fix some ε ≥ 0. First, Lemma 33 (our extension of
Lemma 5 from the main text) states for our particular choice of η that

Ef∼Πn [−
1

η
logE [e−η(`f−m

v(ε)
F )

]] ⊴η⋅n Ef∼Πn

⎡
⎢
⎢
⎢
⎢
⎣

1

n

n

∑
j=1

(`f(Zj) −m
v(ε)
F (Zj))

⎤
⎥
⎥
⎥
⎥
⎦

+
KL(Πn ∥Π0)

ηn
.

(83)

Weakening this to an in-expectation statement via part (i) of Proposition 3, and combining the in-
expectation version with Lemma 28, (51) implies that, for c′2u =

1
c

2ηu+1

1− 2η
v(ε)

,

EZn1 [Ef∼Πn [E[Lf ]]] ≤ c′2uEZn1

⎡
⎢
⎢
⎢
⎢
⎣

Ef∼Πn

⎡
⎢
⎢
⎢
⎢
⎣

1

n

n

∑
j=1

(`f(Zj) −m
v(ε)
F (Zj))

⎤
⎥
⎥
⎥
⎥
⎦

+
KL(Πn ∥Π0)

ηn

⎤
⎥
⎥
⎥
⎥
⎦

.

(84)

Now, the v-PPC condition implies that E[`f∗] ≤ E[m
v(ε)
F ] + ε, implying the result (52).

Appendix F. Proofs for Section 6.3

F.1. Proof of Proposition 30

We first state another proposition that is of independent interest, relating generalized “small-ball”
assumptions to weakenings thereof which resemble the witness condition.

Definition 39 We say that a collection of nonnegative random variables {Sa ∶ a ∈ A} satisfies
the generalized small-ball condition if there exist constants C1,C2 with for all a ∈ A, P (Sa ≥

C1 E[Sa]) ≥ C2 (Mendelson’s (2014) small-ball assumption in Example 9 and 12 is the case with
A = F × F , Sf,g ∶= (f(X) − g(X))2, C1 = κ2,C2 = ε). We say that {Sa ∶ a ∈ A} satisfies
the generalized weakened small-ball condition if there exist constants C ′

1,C
′
2 with for all a ∈ A,

E[1{Sa<C′
1 E[Sa]} ⋅Sa] ≥ C

′
2 E[Sa].
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The term “weakened” comes from the following proposition:

Proposition 40 Suppose that the generalized small-ball condition holds with constants C1 and
C2. Then the generalized weakened small-ball condition holds with constants C ′

1 = 2/C2 and
C ′

2 = (C1C2)/2.

Proof From Markov’s inequality, we have for all a ∈ A, P (Sa < (2/C2)E[Sa]) ≥ 1 − C2/2. In
combination with the small-ball assumption, this implies

P (C1 E[Sa] ≤ Sa <
2

C2
E[Sa]) ≥

C2

2
,

and so, since Sa ≥ 0,

E [1{Sa<(2/C2)E[Sa]} ⋅Sa] ≥ E [1{C1 E[Sa]≤Sa<(2/C2)E[Sa]} ⋅Sa] ≥
C2

2
⋅C1 ⋅E[Sa],

and the result follows.

Proof (of Proposition 30) Take some c0 > b, with a precise value to be established later. First
consider the set {f ∈ F ∶ E[Lf ] > c0}. Define the random variable Sf ∶= (f(X) − f∗(X))2 and
Tf ∶= 2(f∗(X) − Y )(f − f∗). From (72) we see that Lf = Sf + Tf . Hence for every c > 0,

E[Lf ⋅ 1{Lf≥cE[Lf ]}]

≤ E[Sf ⋅ 1{Sf≥Tf} ⋅1{Sf+Tf≥cE[Lf ]}] +E[Sf ⋅ 1{Sf<Tf} ⋅1{Sf+Tf≥cE[Lf ]}] +E[∣Tf ∣]

≤ E[Sf ⋅ 1{Sf≥Tf} ⋅1{2Sf≥cE[Lf ]}] +E[Tf ⋅ 1{Sf<Tf} ⋅1{Sf+Tf≥cE[Lf ]}] +E[∣Tf ∣]

≤ E[Sf ⋅ 1{Sf≥Tf} ⋅1{Sf≥(c/2)E[Sf ]}] + 2E[∣Tf ∣], (85)

where the last inequality follows since E[Sf ] ≤ E[Lf ], owing to (73).
We now bound both terms further. By Cauchy-Schwarz, the second term satisfies

2E[∣Tf ∣] = 4E[∣Y − f∗∣∣f − f∗∣]

≤ 4
√

E[(Y − f∗)2] ⋅E[S2
f ] ≤ 4

¿
Á
ÁÀE[`f∗]

E[Lf ]
⋅E[Lf ] < 4

√
E[`f∗]

c0
⋅E[Lf ].

Plugging in c′ ∶= (c/2) = 2/ε, the first term can be rewritten, by Proposition 40 and our assumption
that the small-ball assumption holds, as

E[Sf ] −E[Sf ⋅ 1{Sf<(c/2)E[Sf ]}] ≤ E[Sf ] −
κ2ε

2
E[Sf ] = (1 −

κ2ε

2
)E[Sf ] ≤ (1 −

κ2ε

2
)E[Lf ],

so that with (85) we get

E[Lf ⋅ 1{Lf≥c′E[Lf ]}] ≤ C
′E[Lf ],

for C ′ = ((1 − κ2ε
2 ) + 4

√
E[`f∗ ]
c0

). We now pick c0 large enough such that C ′ < 1. It then follows

by the characterization (36) of the witness condition that the set {f ∈ F ∶ E[Lf ] ≥ c0} satisfies the
(τ, c)-witness condition with τ(x) = c′x for c′ = 2/ε and constant c = 1 −C ′.

62



FAST RATES FOR GENERAL UNBOUNDED LOSS FUNCTIONS:FROM ERM TO GENERALIZED BAYES

For the set {f ∈ F ∶ E[Lf ] < c0}, note that we have already shown (Example 7) that the
Bernstein condition implies the basic witness condition. This implies that there exists u > 0 such
that {f ∈ F ∶ E[Lf ] ≤ c0} satisfies the (u, c)-witness condition for c = 1

2 .
Putting the two statements for both subsets of F together, it follows that F satisfies the (τ, c)-

witness condition with any τ such that τ(x) ≥ u∨ 2x
ε for all x and with c = (1 −C ′)∧ 1

2 ; the result
follows.

F.2. Proof of Theorem 31

We will need the following lemma, whose proof is a straightforward extension of the proofs of
Theorem 22 and Theorem 29:

Lemma 41 With τ as in the statement of Theorem 31, we get for any ε ≥ 0, any 0 < η <
v(ε)

2 :

under v-central: Ef∼Πn [ξ(E[Lf ])] ⊴ η⋅n
2cu+ε

cu+ε (ICn,η(Π∣) + ε) (86)

under v-PPC: EZn1 [Ef∼Πn [ξ(E[Lf ])]] ≤ c
′
2u (EZn1 [ICn,η(Π∣)] + ε) , (87)

where cu ∶= u
c

η+1
1− η

v(ε)
and c′2u ∶=

u
c

2η+1

1− 2η
v(ε)

and ξ(E[Lf ]) = 1∧E[Lf ].

Proof (86) follows by following essentially the same steps as in the proof of Theorem 22, but
splitting the expectation in two parts:

Ef∼Πn [ξ(E[Lf ])] = Ef∼Πn [1{E[Lf ]<1} ⋅E[Lf ]] +Ef∼Πn [1{E[Lf ]≥1} ⋅1] . (88)

Fix some ε ≥ 0. The first term on the right of (88) can be bounded as follows, using Lemma 21 and
the fact that a (u, c)-witness condition is assumed for f with E[Lf ] < 1 in combination with (83)
and the fact that for c > 0 and general random variables U,V , we have U ⊴a V ⇔ cU ⊴a/c cV :

Ef∼Πn [1{E[Lf ]<1} ⋅E[Lf ]] ⊴ηn/cu+ε cu+ε ⋅
⎛

⎝
Ef∼Πn

⎡
⎢
⎢
⎢
⎢
⎣

1

n

n

∑
j=1

(`f(Zj) − `f∗ε (Zj))

⎤
⎥
⎥
⎥
⎥
⎦

+
KL(Πn ∥Π0)

ηn

⎞

⎠
.

The second term on the right of (88) can similarly be bounded, using that τ(E[Lf ]) = uE[Lf ] for
all f with E[Lf ] ≥ 1:

Ef∼Πn

⎡
⎢
⎢
⎢
⎢
⎣

1{E[Lf ]≥1} ⋅
E[Lf ]

E[Lf ]

⎤
⎥
⎥
⎥
⎥
⎦

⊴ηn/B

B ⋅
⎛

⎝
Ef∼Πn

⎡
⎢
⎢
⎢
⎢
⎣

1

n

n

∑
j=1

(`f(Zj) − `f∗ε (Zj))

⎤
⎥
⎥
⎥
⎥
⎦

+
KL(Πn ∥Π0)

ηn

⎞

⎠
,

where B = supf ∶E[Lf ]≥1 cuE[Lf ]+ε/E[Lf ]. The result (86) now follows by adding the two terms
using Proposition 3 and bounding B by using that cu⋅a+ε/a ≤ cu+ε for a ≥ 1.

(87) follows in similar fashion, by repeating the proof of Theorem 29, but again splitting the
expectation of ξ(Lf) in two parts, just like above; we omit the details.
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Proof (of Theorem 31) We start by establishing the key inequality (90) below both under the v-
central and the v-PPC condition, but with different values for rn in (90). For this, we invoke
Lemma 41. This gives that the v-PPC condition implies, via (87) and Markov’s inequality, that
for all δ ≥ 0, with probability at least 1 − δ,

Ef∼Πn [ξ(E[Lf ])] ≤ rn, (89)

where rn =
c′2u
δ ⋅ (E [ICn,ηn] + εn).

On the other hand, under the v-central condition, (86) holds and via Proposition 3 we can turn it
into a high probability bound. Combining this bound with (54) via a standard union bound argument
gives that, for all δ > 0, with probability at least 1 − δ, (89) holds, with ξ as before but now with
rn = cu+εnCn,δ (E [ICn,ηn] + εn +

2
nηn

) . Rewriting (89) gives that, with probability at least 1 − δ,

Πn ({f ∶ E[Lf ] ≥ 1}) +Ef∼Πn [1{E[Lf ]<1} ⋅E[Lf ])] ≤ rn. (90)

Part 1, Deterministic Estimators. For deterministic Π∣ ≡ (f̂ ,Π0),
(90) simplifies to 1{E[L

f̂
]≥1} +1{E[L

f̂
]<1} ⋅E[Lf̂ ] ≤ rn, which further implies that with probability

at least 1 − δ, simultaneously,

1{E[L
f̂
]≥1} ≤ rn and 1{E[L

f̂
]<1} ⋅E[Lf̂ ] ≤ rn, (91)

and both the result for the v-PPC condition (53) and the v-central condition (55) follow by noting
that we may assume n large enough so that rn < 1, so that (91) is logically equivalent to

E[Lf̂ ] < 1 and 1{E[L
f̂
]<1} ⋅E[Lf̂ ] ≤ rn,

which in turn is equivalent to E[Lf̂ ] ≤ rn, and thus the results are implied.
Part 2, General Learning Algorithms. Here we assume the v-PPC condition, so we can use (90)

with rn as in the v-PPC case.
By Markov’s inequality, for any sequence b1, b2, . . . of positive numbers tending to ∞,

Πn ({f ∈ F ∶ 1 > E[Lf ] > bnrn}) = Πn (1{E[Lf ]<1} ⋅E[Lf ] > bnrn)

≤
Ef∼Πn [1{E[Lf ]<1} ⋅E[Lf ]]

bnrn
.

Combining this with (90) (dropping the leftmost term in that inequality) gives that with probability
at least 1 − δ,

Πn ({f ∈ F ∶ 1 > E[Lf ] > bnrn}) ≤
1

bn
.

Combining this again with (90), now dropping the second term in the inequality and using a standard
union bound, gives that with probability at least 1 − 2δ,

Πn ({f ∈ F ∶ E[Lf ] > bnrn}) ≤
1

bn
+ rn,
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which, plugging in the definition of rn and ICn,η on the left, can be rewritten as, for each n, each δ,
with an as in the theorem statement:

With probability ≥ 1 − 2δ: Πn ({f ∈ F ∶ E[Lf ] >
bn
an

⋅
c′2u
δ

⋅ (E[ICn,η + εn])}) ≤
1

bn
+ rn. (92)

Now choose δ = 1/
√
an → 0 as a function of n, and choose bn =

√
an → ∞. Then (92) implies the

result.

F.3. Proof of Proposition 32

Proof Let c, u and τ be as in the statement of the proposition. For each f ∈ F , we will define
modified predictors f ′, defined in terms of their losses `f ′ so that for all such f ′, we have

E[(`f ′ − `f∗) ⋅ 1{`f ′−`f∗≤u′}] ≥ 0, for u′ = u ⋅ (
E[`f∗]

c
∨1) , (93)

which allows us to apply Proposition 26 to the set of f ′; we will also ensure that for all z ∈ Z ,

`f ′(z) ≤ `f(z) and `(f∗)′(z) = `f∗(z), (94)

which will allow us to apply Proposition 27 so that results for f ′ transfer to the original f . Once we
have shown (93) and (94), the result follows.

Case 1: E[Lf ] ≤ (E[`f∗]/c)∨1. For all f with E[Lf ] ≤ (E[`f∗]/c)∨1 (including f∗), we
simply set f ′ = f . Then (94) holds trivially. To see that (93) holds, note that the assumed τ -witness
condition holds for τ(E[Lf ]) = u(1∨E[Lf ]) ≤ u(1∨(E[`f∗]/c∨1)), which is no larger than the
u′ mentioned in (93), which then immediately follows by the assumed witness condition.

Case 2: E[Lf ] > (E[`f∗]/c)∨1. For these f , we define

`f ′(z) =

⎧⎪⎪
⎨
⎪⎪⎩

`f(z) if `f(z) ≤ `f∗(z)
`f (z)−`f∗(z)

c′ + `f∗(z) if `f(z) > `f∗(z),

with c′ ∶= E[Lf ]/(E[`f∗/c]∨1), which by construction must satisfy c′ > 1. This implies after
rearranging terms that (94) holds. It thus remains to prove (93). To see that it holds, first note that
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GRÜNWALD MEHTA

`f ′ > `f∗ ⇔ `f > `f∗ and that `f ≥ 0 on all z. Using these facts we find that:

E[(`f ′ − `f∗) ⋅ 1{`f ′−`f∗≤u′}]

≥ −E[1{`f ′−`f∗≤0} `f∗] +E[(`f ′ − `f∗) ⋅ 1{`f ′−`f∗>0} ⋅1{`f ′−`f∗≤u′}]

≥ −E[`f∗] +E[(`f ′ − `f∗) ⋅ 1{`f>`f∗} ⋅1{`f ′−`f∗≤u′}]

= −E[`f∗] +E [(
`f − `f∗

c′
) ⋅ 1{`f>`f∗} ⋅1{`f−`f∗≤u′c′}]

= −E[`f∗] +
1

c′
E[(`f − `f∗) ⋅ 1{`f>`f∗} ⋅1{`f−`f∗≤u′E[Lf ]/((E[`f∗ ]/c)∨1)}]

= −E[`f∗] +
1

c′
E[(`f − `f∗) ⋅ 1{`f>`f∗} ⋅1{`f−`f∗≤uE[Lf ]}].

= −E[`f∗] +
1

c′
E[(`f − `f∗) ⋅ 1{`f>`f∗} ⋅1{`f−`f∗≤u(E[Lf ] ∨1)}]. (95)

≥ −E[`f∗] +
1

c′
E[(`f − `f∗) ⋅ 1{`f−`f∗≤u(E[Lf ] ∨1)}]

≥ −E[`f∗] +
1

c′
⋅ cE[Lf ] ≥ −E[`f∗] +E[`f∗] = 0, (96)

where (95) follows because all f ’s we consider here have E[Lf ] > 1 and (96) follows by our
assumption of the τ -witness condition.

Appendix G. The Existence of the Generalized Reversed Information Projection

Recall that EF ,η is the the entropification-induced set {e−η`f ∶ f ∈ F}. In this section, we prove the
existence of the generalized reversed information projection mη

F of P onto conv(EF ,η). Because F
and η are fixed throughout, we adopt the notation E ∶= EF ,η and C ∶= conv(EF ,η).

Formally, we will show that there exists q∗ (not necessarily in C) satisfying

E[− log q∗(Z)] = inf
q∈C

E[− log q(Z)].

One might think that there is an easy proof by simply taking q∗ to lie in the closure of C under some
appropriate topology, but it is not evident what topology to take. For example, even in the simple
case with η = 1 and `f is the log-loss so that E and C are sets of probability densities, it may happen
that q∗ is a sub-density (integrating to less than 1) (Li, 1999) so that it would not lie in the closure
of any standard topology which we may impose on C. We thus follow a different approach. We
first rewrite the above in the language of information geometry. To provide easier comparison to Li
(1999) we use the following modified KL notation here for a generalized KL divergence, which in
particular makes the underlying distribution P explicit:

KL(p; q0 ∥ q) ∶= EZ∼P [log
q0(Z)

q(Z)
] ,

where q0 and q are nonnegative but neither need be a normalized probability density. Then the
existence question above is equivalent to the existence of q∗ such that

KL(p; q0 ∥ q
∗
) = inf

q∈C
KL(p; q0 ∥ q);
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here, the only restriction on q0 is that EZ∼P [log q0] be finite.
Now, Li (1999) already showed the above in the case of density estimation with log loss, η = 1,

and q0 = p; in that setting, we have e−η`f = f , and so mixtures of elements of E correspond to
mixtures of probability distributions in F . Hence, our setting is more general, yet Li’s argument
(with minor adaptations) still works. To be sure, we go through his argument step-by-step and show
that it all still works in our setting.

In the remainder of this section, we treat two cases simultaneously unless a separate treatment
is indicated: the case when the loss is uniformly bounded from below (as in Appendix H.1) and
the case of log loss (with the loss not uniformly bounded from below, as in Appendix H.2). In the
former case, we always take q0 = e

−η`f∗ . In the latter case, we always take q0 = p.

G.1. Proving q∗ exists

Throughout, we will need to assume the existence of a certain sequence (qn)n≥1 in C, satisfying
KL(p; q0 ∥ qn) → infq∈C KL(p; q0 ∥ q), for which KL(p; q0 ∥ qn) is finite for all n. This is not prob-
lematic, as we now explain. We treat separately the case of losses uniformly bounded from below
and the case of log loss without a uniform lower bound on the loss.

Losses uniformly bounded from below. First, observe that for any qn ∈ C,

KL(p; q0 ∥ qn) ≥ −∥`−∥∞ −E[`f∗] > −∞.

To see this, observe that qn = Ef∼Rn[e
−η`f ] for some distributionRn ∈ ∆(F); then assumption (98)

gives the first inequality. The second inequality holds because we only deal with non-trivial learning
problems, and so f∗ obtains risk less than +∞. Next, since the particular choice qn = e−η`f∗ yields
KL(p; q0 ∥ qn) = 0, we may always restrict to sequences for which we have KL(p; q0 ∥ qn) < ∞ for
all n. Hence, we indeed can take the sequence satisfying the finiteness requirement.

Log loss. First, we show for any qn that KL(p; q0 ∥ qn) is well-defined; its well-definedness is not
immediately clear since each qn need not be a probablity density. For convenience, we introduce the
notation that, for any n, the distributionRn satisfies qn = Ef∼Rn[e

−η`f ]. Therefore, − log qn =m
η
Rn

.
Now, defining the pseudo-loss `p(Z) = − log p(Z) corresponding to playing the pseudo-action

p, our present goal is to show that E [mη
Rn

− `P ] is well-defined for each j. To this end, we make
the following claim:

EZ∼P [(mη
Rn

(Z) − `p(Z))
−
] > −

1

η
log 2. (97)
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To see the claim, define for f ∈ F the excess loss `f,p(Z) ∶= `f(Z) − `p(Z) and observe that (we
simplify by writing R instead of Rn)

EZ∼P [(mη
R − `p)

−
]

= EZ∼P [−
1

η
logEf∼R [e−η`f,p(Z)] ⋅ 1{Ef∼R[e−η`f,p(Z)]>e}]

=
1

η
EZ∼P [− log (Ef∼R [e−η`f,p(Z)] ⋅ 1{Ef∼R[e−η`f,p(Z)]>e} +1{Ef∼R[e−η`f,p(Z)]≤e})]

≥ −
1

η
logEZ∼P [Ef∼R [e−η`f,p(Z)] ⋅ 1{Ef∼R[e−η`f,p(Z)]>e} +1{Ef∼R[e−η`f,p(Z)]≤e}]

≥ −
1

η
logEZ∼P [Ef∼R [e−η`f,p(Z)] ⋅ 1{Ef∼R[e−η`f,p(Z)]>e} +1] ,

where Jensen’s inequality was applied for the first inequality. It remains to show that

EZ∼P [Ef∼R [e−η`f,p(Z)] ⋅ 1{Ef∼R[e−η`f,p(Z)]>e}] < ∞.

Rewriting the LHS, we have

EZ∼P [Ef∼R [(
pf

p
)
η

] ⋅ 1{(
pf
p

)
η
>e}] ≤ EZ∼P [Ef∼R [(

pf

p
)
η

]]

≤ (EZ∼P [Ef∼R [
pf

p
]])

η

= 1,

where the inequality follows from η ≤ 1, the concavity of the map x ↦ xη, and Jensen’s inequality.
The claim thus follows.

Now that we have shown that KL(p; q0 ∥ qn) is well-defined for all n, we also conclude from
assumption (8) that we may always take a sequence such that KL(p; q0 ∥ qn) < ∞ for all n. More-
over, from (97), this can be strengthened to KL(p; q0 ∥ qn) ∈ [−η−1 log 2,∞), and so this quantity is
finite as desired.

In the remainder of this section, the two cases of loss assumptions are treated simulataneously
(recall that q0 is defined differently for each).

STEP 1: EXISTENCE OF MINIMIZER q̄n IN CONVEX HULL OF FINITE SEQUENCE

Let (qn)n≥1 be a sequence in C for which KL(p; q0 ∥ qn) → infq∈C KL(p; q0 ∥ q). From the argument
above we may restrict the sequence to one for which KL(p; q0 ∥ qn) is finite for all n. Take Cn to be
conv({q1, . . . , qn}).

We introduce the representation D(t) ∶ ∆n−1 → R+, where D(t) = KL(p; q0 ∥ qt) with qt =
∑
n
j=1 tjqj .

The first claim is that t ↦ D(t) is a continuous function. Li’s Lemma 4.2 proves continuity
of D when q0 = p, KL(p ∥ qi) < ∞ for i ∈ [n] and each qi is a probability distribution. However,
inspection of the proof reveals that the result still holds for general q0 and when both q0 and qi are
only pseudoprobability densities, as long as we still have KL(p; q0 ∥ qi) < ∞ for i ∈ [n]. But we
already have established the latter requirement, and so D is indeed continuous. Since D also has
compact domain, it follows that D is globally minimized by an element in Cn. Call this element q̄n.
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STEP 2: BENEFICIAL PROPERTIES OF MINIMIZER q̄n

We claim for all q ∈ Cn that ∫ p
q
q̄n

≤ 1. This follows from a suitably adapted version of Li’s
Lemma 4.1. First, we observe that even though Li’s Lemma 4.1 is for the case of the KL divergence
KL(p ∥ q) = ∫ p log p

q , changing the log p term to log q0 has no effect on the proof. Therefore, this
result also works for KL(p; q0 ∥ q). Next, the proof works without modification even when its q∗ and
q are only pseudoprobability densities. To apply Li’s Lemma 4.1, mutatis mutandis, we instantiate
its C as Cn, its p as p, its q as q, and its q∗ as q̄n.

STEP 3: (log q̄n)n IS CAUCHY SEQUENCE IN L1(P )

We can find a sequence (q̄n)n≥1 such that {KL(p; q0 ∥ q̄n)} both is non-increasing and converges to
infq∈C KL(p ∥ q).

Next, let n ≤m throughout the rest of this step and observe that

KL(p; q0 ∥ q̄n) − KL(p; q0 ∥ q̄m) = ∫ p log
p

pq̄n
q̄m

/cm,n
+ log

1

cm,n

with cm,n ∶= ∫
pq̄n
q̄m

.
Now, due to the normalization by cm,n the first term on the RHS is a KL divergence and hence

nonnegative. Also, since cm,n ≤ 1, the second term also is nonnegative.
Next, observe that KL(p; q0 ∥ q̄n) − KL(p; q0 ∥ q̄m) → 0 as n,m→∞, and so we have

∫ p log
p

pq̄n
q̄m

/cm,n
= KL (p ∥

pq̄n
q̄m

/cm,n) → 0

as well as

log
1

cm,n
→ 0 ⇒ cm,n → 1.

Next, we apply the following inequality due to Barron/Pinsker, holding for any probability
distributions p1 and p2:

∫ p1∣ log(p1) − log(p2)∣ ≤ KL(p1 ∥p2) +
√

2KL(p1 ∥p2).

This yields

∫ p

RRRRRRRRRRRR

log
p

pq̄n
q̄m

/cm,n

RRRRRRRRRRRR

→ 0.

Since cm,n → 1, it therefore follows that

∫ p∣ log(q̄n) − log(q̄m)∣ → 0.

Therefore (log(q̄n))n≥1 is a Cauchy sequence in L1(P ), and from the completeness of this
space, log(q̄n) converges to some log(q∗) ∈ L1(P ).

Finally, we observe that KL(p; q0 ∥ q
∗) = limn→∞ KL(p; q0 ∥ q̄n) since

KL(p; q0 ∥ q
∗
) − lim

n→∞
KL(p; q0 ∥ q̄n) = lim

n→∞∫
p(log q̄n − log q∗)

≤ lim
n→∞∫

p∣ log q̄n − log q∗∣

= 0.
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Appendix H. Definitions and conventions concerning ∞ and −∞

For general losses we allow the loss to take on the value ∞, and for density estimation under log
loss we allow the loss to take on the value ∞ and to be unbounded from below; see Appendix H.2
for a full description of our assumptions in this latter setting. We thus need to take care to avoid
ambiguous expressions such as ∞ − ∞; here we follow the approach of Grünwald and Dawid
(2004). We generally permit operations on the extended real line [−∞,∞], with definitions and
exceptions as in (Rockafellar, 1970, Section 4). For a given distribution P on some space U with
associated σ-algebra, we define the extended random variable U as any measurable function U ∶

U → R∪{−∞,∞}. We say that U is well-defined if either P (U = ∞) = 0 or P (U = −∞) = 0. Now
let U be a well-defined extended random variable. For any function f ∶ [−∞,∞] → [−∞,∞], we
say that f(U) is well-defined if either P (f(U) = ∞) = 0 or P (f(U) = −∞) = 0 and we abbreviate
the expectation EU∼P [f(U)] to E[f], hence we think of f as an extended random variable itself.
If f is bounded from below and above E[f] is defined in the usual manner. Otherwise we interpret
E[f] as E[f+]+E[f−] where f+(u) ∶= max{f(u),0} and f−(u) ∶= min{f(u),0}, allowing either
E[f+] = ∞ or E[f−] = −∞, but not both. In the first case, we say that E[f] is well-defined; in
the latter case, E[f] is undefined. In the remainder of this section we introduce conditions under
which all extended random variables and all expectations occurring in the main text are always
well-defined.

The quantities which we need to show to be well-defined, both in the case of general losses and
log loss, are (i) the risk for deterministic estimators; (ii) the risk for randomized estimators; (iii) the
excess risk for either deterministic or randomized estimators; and (iv) certain ESIs and posterior
expectations of annealed expectations. The GRIP is handled separately in Appendix G.

H.1. When the loss is uniformly bounded from below (general losses)

Here, we show that the relevant expressions are well-defined when the loss is uniformly bounded
from below.

RISK FOR DETERMINISTIC/RANDOMIZED ESTIMATORS AND RELEVANT COMPARATORS

We first show that the risk of any deterministic estimator is well-defined. Our assumption that the
loss is uniformly bounded from below is equivalent to the existence of a finite constant ∥`−∥∞ for
which

inf
f∈F

inf
z∈Z

`f(Z) ≥ −∥`−∥∞. (98)

We thus have for any f ∈ F that EZ∼P [(`f(Z))−] > −∞, and so the risk EZ∼P [`f(Z)] is well-
defined. Moreover, since inff∈F E[`f(Z)] > −∞, we also have that for any distribution Π on F
that Ef∼Π [EZ∼P [`f(Z)]] is well-defined.

For all comparators f̃ used in this paper, assumption (98) also implies that

inf
z∈Z

`f̃(Z) > −∞.

To see this, observe that the only comparators we use from the set F̄ \ F are GRIPs (which for a
given z ∈ Z cannot obtain loss lower than inff∈F `f(z)) and versions of the loss of a GRIP or some
f ∈ F that are shifted by a finite constant. Thus, the risk is well-defined for all comparators used in
this paper.
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EXCESS RISK FOR RANDOMIZED ESTIMATORS

Next, the excess risk of any randomized estimator relative to a non-trivial comparator also is well-
defined, since, by definition of a non-trivial comparator f̃ and the uniformly-bounded-below as-
sumption, we have −∞ < EZ∼P [`f̃(Z)] < ∞.

ESI / POSTERIOR-EXPECTATION OF ANNEALED EXPECTATIONS

Finally, we verify that all ESIs and annealed expectations of excess losses also are well-defined.
The relevant quantities are (for all non-trivial comparators f̃ )

EZ∼P [e
η(`f̃ (Z)−`f (Z))

] for all f ∈ F (99)

and

Ef∼Q [−
1

η
logEZ∼P [e

η(`f̃ (Z)−`f (Z))
]] for all Q ∈ ∆(F). (100)

A potential issue with the ESI (99) being well-defined is that we can have both `f̃(z) = +∞

and `f(z) = +∞ for all z in some set A ⊂ Z of P -measure zero. To show that the expectation is
well-defined, we define for j = 1,2, . . . the random variable

gj(Z) = exp (η ((j ∧ `f̃(Z)) − `f(Z))) .

Now, for each j = 1,2, . . ., the expectation E[gj(Z)] is well-defined. Moreover, letting A be
precisely the subset of Z for which `f̃(z) = +∞, it holds that {gj} converges to exp (η(`f̃ − `f))

pointwise on Z \A. Hence, from Levi’s monotone convergence theorem, EZ∼P [e
η(`f̃ (Z)−`f (Z))

]

is well-defined.
Next, we show that annealed expectations of the form (100) also are well-defined. From

Hölder’s inequality,

E [eη(`f̃ (Z)−`f (Z))
] = E [eη`f̃ (Z)e−η`f (Z)

]

≤ e∥`−∥∞ E [eη`f̃ (Z)
]

< ∞,

where the final inequality follows because `f̃(Z) < ∞ with probability 1. Therefore, the negative
logarithm of the above is lower bounded by a finite negative constant that is independent of f ∈ F .
It follows that (100) is well-defined.

H.2. Log loss

In the common case of log loss with uncountable sample spaces, the loss is not always uniformly
bounded from below; see Example 13 below for a concrete illustration. To allow for this case while
avoiding issues with infinities we need to make the alternative assumptions of Section 2, which we
now discuss. Recall that we assumed for all f ∈ F that pf is absolutely continuous with respect
to a common dominating measure µ, and that furthermore we have (8) and (9). To motivate these
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assumptions, observe that H(P ) is the Bayes risk with respect to all possible probability measures,
whereas KL(P ∥Pf∗) is the approximation error due to playing the optimal in-model predictor f∗

rather than P . Now, (8) is a reasonable requirement, as it simply means that the approximation error
is finite; this is discussed further in Example 13. Now, if we have H(P ) = −∞, then in light of
(8), we would also have to have EZ∼P [`f∗(Z)] = −∞, which would imply that for any f ∈ F with
E[`f ] ≠ E[`f∗], the excess risk is infinite; this would make learning meaningless. We thus8

RISK FOR DETERMINISTIC ESTIMATORS

Because for log loss we do not assume that losses are bounded from below, we need to ensure that
the risk is well-defined.

We do this in two steps. First, we show that KL(P ∥Q) is well-defined for any probability
distribution Q with density q (with respect to µ). We do this by showing that E [(log p

q)
−
] > −∞:

E[1{q/p>1}(− log q + log p)] = E[− log(1{q/p>1} ⋅(q/p) + 1{q/p≤1} ⋅1)]

≥ − logE[1{q/p>1} ⋅(q/p) + 1{q/p≤1} ⋅1]

≥ − log 2,

where the application of Jensen’s inequality for the first inequality is legitimate because the expec-
tation is of a nonpositive quantity. The above holds in particular for q set to any pf (for f ∈ F).
Next, we use the decomposition

E[`f ] = E[− log pf + log p − log p] = KL(P ∥Q) +H(P ). (101)

Since the KL divergence term is nonnegative and H(P ) < −∞ (recall assumption (9)), the above is
well-defined.

We note that it is not sufficient to replace (9) by the standard requirement that P ≪ Pf for all
f ∈ F , for then (101) may become undefined. To see this, note that, for two probability measures
P and R, we may have KL(P ∥R) = ∞ even if P ≪ R (take, for example, P a distribution on
N with mass function p(i) ∝ i−1−α for 0 < α ≤ 1 and R with mass function r(i) = 2−i). Since
H(P ) defined relative to base measure R is equal to −KL(P ∥R) we may in general also have
H(P ) = −∞ even if P has a density relative to R. Thus, without the requirement (9) we could have
KL(P ∥Q) +H(P ) = ∞−∞ which is undefined.

RISK FOR RANDOMIZED ESTIMATORS

The above argument can be trivially modified (adding an outer expectation over f ∼ Π everywhere)
to show that the risk of any randomized estimator Π is also well-defined.

EXCESS RISK WITH RESPECT TO RANDOMIZED ESTIMATORS

Finally, because we only consider situations in this paper for which the GRIP obtains risk less than
positive infinity, the excess risk of any Π with respect to the GRIP is well-defined; the same is true
for the excess risk with respect to the comparator f∗, since we only consider situations where the
risk of f∗ is close to the risk of the GRIP.

8. A referee asked the natural question why we do not simply impose the more standard condition that P ≪ Pf for all
f ∈ F , thus avoiding use of differential entropy. But this is not sufficient, as explained below (101).
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ESI / POSTERIOR-EXPECTATION OF ANNEALED EXPECTATIONS

Finally, we verify that all ESIs and annealed expectations of excess losses also are well-defined.
The relevant quantities are (for all non-trivial comparators f̃ )

EZ∼P [e
η(`f̃ (Z)−`f (Z))

] for all f ∈ F (102)

and, taking the comparator to be the GRIPmη
F as this is all that we require for annealed expectations

in this paper,

Ef∼Q [−
1

η
logEZ∼P [eη(m

η
F(Z)−`f (Z))

]] for all Q ∈ ∆(F). (103)

A potential issue with the ESI (102) being well-defined is that we can have `f̃(z) = `f(z) = +∞
or `f̃(z) = `f(z) = −∞ for all z in some setA ⊂ Z of P -measure zero. To show that the expectation
is well-defined, we define for j = 1,2, . . . the random variable

gj(Z) = exp (η ([j ∧ `f̃(Z)] − [(−j)∨ `f(Z)])) .

Now, for each j = 1,2, . . ., the expectation E[gj(Z)] is well-defined. Moreover, letting A be
precisely the subset of Z for which either `f̃(z) = +∞ or `f(z) = −∞, it holds that {gj} converges

to exp (η(`f̃ − `f)) pointwise onZ\A. Hence, from Beppo Levi’s monotone convergence theorem,

EZ∼P [e
η(`f̃ (Z)−`f (Z))

] is well-defined.

Finally, we verify that (103) is well-defined. Indeed, it is well-defined as a trivial consequence
of EZ∼P [eη(m

η
F(Z)−`f (Z))] ≤ 1 which holds by virtue of the comparator being the GRIP.

Example 13 (Density Estimation) Consider the Gaussian scale family with Z = R and {pf ∣ f ∈

F} where F = R+ and pf(y) ∝ exp(−y2/2f), i.e., pf is the density, relative to standard Lebesgue
measure, of the normal distribution with mean 0 and variance σ2 ∶= f . Then under log loss we have
`f(y) =

y2

f +
1
2 log(π(f)). Obviously, we do not want to rule out a model as standard like this, yet the

loss is unbounded from below, which illustrates the need for treating log-loss separately from other
loss functions. The requirements (8) and (9) above do allow for this model, as long as the underlying
distribution P (a) has a density relative to Lebesgue measure (otherwise (9) does not hold); (b) is
not too-heavy tailed (it needs to have a second moment, otherwise (8) does not hold), and (c) is not
excessively peaked at 0 (for example, the probability distribution P on (0,1/ exp(1)) with density
p(x) = 1/(x ⋅ log2 x) has H(P ) = −∞, but distribution P ′ with density p′(x) = 3/(x ⋅ log4 x) has
finite H(P ′). If one restricts the model to contain only f ≥ σ2

0 for some σ2
0 > 0, then the log loss is

bounded from below, and the requirements (8) and (9) do not need to be imposed; in that situation,
one could allow for an underlying distribution P with a point mass at some outcome, so that P does
not have a density relative to Lebesgue measure and D(P ∥Pf∗) = ∞, yet all our concepts remain
well-defined. ◻

Appendix I. Comparative examples

Example 14 (Bernstein condition does not hold, bounded excess risk) Consider regression with
squared loss, so that Z = X × Y . Select P such that X and Y are independent. Let X follow the
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law P such that P (X = 0) = P (X = 1) = a
2 , for a ∶= 2 − π2

6 ∈ (0,1), and, for j = 2,3, . . .,
P (X = j) = 1

j2
. Let Y = 0 surely. Take as F the countable class {f1, f2, . . .} such that f1(1) = 0.5

and f1 is identically 0 for all other values of x ∈ X ; for each j = 2,3, . . ., the function fj is defined
as fj(0) = 1, fj(j) = j, and fj takes the value 0 otherwise.

It follows that f∗ = f1, and for every j > 1 we have E[Lfj ] =
3a
8 + 1. Thus, the excess risk is

bounded for all fj . The witness condition holds because for all j > 1 we have Pr(Lfj = 1) = a and
E[Lfj ⋅1{Lfj≤1}] ≥

3a
8 . Also, it is easy to verify that the strong central condition holds with η = 2. On

the other hand, the Bernstein condition fails to hold in this example because E[L2
fj
] = a + j2 → ∞

as j → ∞, while the excess risk is finite. In fact, even the variance of the excess risk is unbounded
as j → ∞, precluding the use of a weaker variance-based Bernstein condition as in equation (5.3)
of Koltchinskii (2006). Therefore, Theorem 22 still applies while, e.g., the results of Zhang (2006b)
and Audibert (2009) do not (see Section 7). ◻

Example 15 (Bernstein condition does not hold, unbounded excess risk ) The setup of this ex-
ample was presented in Example 5.7 of Van Erven et al. (2015) and is reproduced here for con-
venience. For fµ the univariate normal density with mean µ and variance 1, let P be the normal
location family and let F = {fµ ∶ µ ∈ R} be the set of densities of the distributions in P . Then,
since the model is well-specified, for any P ∈ P with density fν we have f∗ = fν . As shown in Van
Erven et al. (2015), the Bernstein condition does not hold in this example, although we note that
the weaker, variance-based Bernstein condition of (Koltchinskii, 2006, equation (5.3)) does hold.
However, we are not aware of any analyses that make use of the variance-based Bernstein condition
in the unbounded excess losses regime.

Since the model is well-specified, the strong central condition holds with η = 1. Next, we show

that the witness condition holds with M = 2, u = 4, and c = 1 −
√

2
π . From location-invariance, we

assume ν > µ = 0 without loss of generality.
First, observe that the excess risk is equal to E[Lfµ] =

1
2ν

2.
As M = 2 < ∞, the witness condition has two cases: the case of excess risk at least 2 and the

case of excess risk below 2. We begin with the first case, in which ν ≥ 1. Then the contribution to
the excess risk from the upper tail is

E [Lfµ ⋅ 1{Lfµ>uE[Lfµ ]}] = E [(−
ν2

2
+Xν) ⋅ 1{− ν2

2
+Xν>u ν2

2
}]

=E [(−
ν2

2
+Xν) ⋅ 1{X>uν

2
+ ν

2
}] ≤ νE [X ⋅ 1{X>uν

2
}] ,

which is at most

νE [X ⋅ 1{X−ν>(u
2
−1)ν}] = ν ∫

∞

0
Pr(X ⋅ 1{X−ν>(u

2
−1)ν} > t)dt

≤ ν
1

√
2π

e−(
u
2
−1)2ν2/2

(u2 − 1)ν
=

1
√

2π

e−(
u
2
−1)2ν2/2

(u2 − 1)
.

Since u = 4, the above is at most 1√
2π

and so, in this regime, the witness condition indeed is

satisfied with c = 1 −
√

2/π.
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Consider now the case of ν < 1. In this case, the threshold simplifies to the constant u and the
upper tail’s contribution to the excess risk is

E [Lfµ ⋅ 1{Lfµ>u}] = E [(−
ν2

2
+Xν) ⋅ 1{− ν2

2
+Xν>u}]

= E [(−
ν2

2
+Xν) ⋅ 1{X>u

ν
+ ν

2
}] ≤ νE [X ⋅ 1{X>u

ν
}] ,

which is at most

νE [X ⋅ 1{X−ν>u
ν
−ν}] = ν ∫

∞

0
Pr(X ⋅ 1{X−ν>u

ν
−ν} > t)dt

≤ ν
1

√
2π

e−(
u
ν
−ν)2/2

u
ν − ν

= ν2 1
√

2π

e−(
u
ν
−ν)2/2

u − ν2
.

Since u = 4 and ν < 1, the above is at most ν2
√

18π
, and so the value of c from before still works and

the witness condition holds in this regime as well. ◻

Example 16 (Small-ball assumption violated) To properly compare to the small-ball assumption
of Mendelson (2014), we consider regression with squared loss in the well-specified setting, so that
the parameter estimation error bounds of Mendelson (2014) directly transfer to excess loss bounds
for squared loss. TakeX and Y be independent. The distribution ofX is defined as, for j = 1,2, . . .,
P (X = j) = pj ∶=

1
a ⋅

1
j2

for a = π2

6 . Let the distribution of Y be zero-mean Gaussian with unit
variance. For the class F , we take the following countable class of indicator functions: for each
j = 0,1,2, . . ., define fj(i) = 1{i=j}, for any positive integer i. Since f0(x) = E[Y ∣ X = x] = 0 for
all x ∈ {1,2, . . .}, we have f∗ = f0.

The small-ball assumption fails in this setting, since, for any constant κ > 0 and for all j =

1,2, . . .:

Pr (∣fj − f
∗
∣ > κ∥fj − f

∗
∥L2(P )) ≤ Pr (∣fj − f

∗
∣ > 0) = pj =

1

aj2
→ 0 as j →∞.

On the other hand, the strong central condition holds with η = 1
2 , since, for all j = 1,2, . . . and

all x:

E [e
−ηLfj ] = E

⎡
⎢
⎢
⎢
⎣

e−η(fj(x)−Y )2

e−ηY 2

⎤
⎥
⎥
⎥
⎦
= ∫

1√
2πη−1

e−η(fj(x)−Y )2

1√
2πη−1

e−ηY 2
p(Y )dy

which is equal to 1 for η = 1
2 , since Y ∼ N(0,1).

It remains to check the witness condition. Observe that, for each j, we have E[Lfj ] = pj .
Next, we study how much of the excess risk comes from the upper tail, above some threshold u:

E [Lfj ⋅ 1{Lfj>u}] = E [(f2
j (X) − 2fj(X)Y ) ⋅ 1{f2

j (X)−2fj(X)Y >u}]

= pj E [(1 − 2Y ) ⋅ 1{1−2Y >u}]

= pj (Pr(Y <
1 − u

2
) − 2E [Y ⋅ 1{Y < 1−u

2
}]) . (104)
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Now, let K ∶= u−1
2 . It is easy to show that

Pr (Y >K) ≤
1

√
2π

e−K
2/2

K
.

In addition, for u ≥ 3 (and hence K ≥ 1), we have

E [Y ⋅ 1{Y >K}] = ∫
∞

0
Pr(Y ⋅ 1{Y >K} > t)dt = ∫

∞

K
Pr(Y > t)dt

≤ ∫

∞

K

1
√

2π

e−t
2/2

t
dt ≤ ∫

∞

K

1
√

2π
e−t

2/2dt ≤
1

√
2π

e−K
2/2

K
dt.

Thus, taking u = 3, we see that (104) is at most pj
√

2
πe

−1/2 ≤
pj
2 , the witness condition therefore

holds, and so we may apply the first part of Theorem 22. ◻
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