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Abstract

Supervised classification techniques use training samples to learn a classification rule with
small expected 0 -1 loss (error probability). Conventional methods enable tractable learn-
ing and provide out-of-sample generalization by using surrogate losses instead of the 0 -1
loss and considering specific families of rules (hypothesis classes). This paper presents
minimax risk classifiers (MRCs) that minimize the worst-case 0 -1 loss with respect to un-
certainty sets of distributions that can include the underlying distribution, with a tunable
confidence. We show that MRCs can provide tight performance guarantees at learning and
are strongly universally consistent using feature mappings given by characteristic kernels.
The paper also proposes efficient optimization techniques for MRC learning and shows that
the methods presented can provide accurate classification together with tight performance
guarantees in practice.

Keywords: Supervised Classification, Robust Risk Minimization, Performance Guaran-
tees, Generalized Maximum Entropy

1. Introduction

Supervised classification techniques use training samples to learn a classification rule that as-
signs labels to instances with small expected 0 -1 loss (error probability). Conventional meth-
ods enable tractable learning and provide out-of-sample generalization by using surrogate
losses instead of the 0 -1 loss and considering specific families of rules (hypothesis classes).
The surrogate losses are usually taken to be convex upper bounds of the 0 -1 loss such as
hinge loss, logistic loss, and exponential loss, see e.g., Bartlett et al. (2006). The families of
rules considered are usually given by parametric functions such as those defined by neural
networks (NNs) and those belonging to reproducing kernel Hilbert spaces (RKHSs), see e.g.,
Shalev-Shwartz and Ben-David (2014). Such techniques can result in strongly universally
consistent methods using surrogate losses that are classification calibrated and Lipschitz
(Bartlett et al., 2006; Tewari and Bartlett, 2007) together with rich families of rules such as
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those given by functions in RKHSs corresponding with universal kernels (Micchelli et al.,
2006; Steinwart, 2005).

Most learning methods are based on the empirical risk minimization (ERM) ap-
proach that minimizes the empirical expected loss of training samples (see e.g., Vapnik
(1998); Mohri et al. (2018); Shalev-Shwartz and Ben-David (2014)). Other methods are
based on the robust risk minimization (RRM) approach that minimizes the worst-case
expected loss with respect to an uncertainty set of distributions (see e.g., Asif et al.
(2015); Shafieezadeh-Abadeh et al. (2019); Duchi and Namkoong (2019)). These methods
correspond with generalized maximum entropy techniques as shown in Mazuelas et al.
(2022) using the theoretical framework in Grünwald and Dawid (2004).

RRM methods mainly differ in the type of uncertainty set considered. These
sets are determined by constraints over probability distributions given in terms of
metrics such as f-divergence (Duchi and Namkoong, 2019), Wasserstein distances
(Shafieezadeh-Abadeh et al., 2019), moments’ fits (Asif et al., 2015), and maximum mean
discrepancies (Staib and Jegelka, 2019). In addition, the uncertainty sets considered
often only include probability distributions with instances’ marginal that coincides
with the empirical marginal of training samples (Asif et al., 2015; Farnia and Tse, 2016;
Fathony et al., 2016; Cortes et al., 2015). An important advantage of RRM methods
is that the function minimized at learning can be an upper bound for the expected
loss if the true underlying distribution is included in the uncertainty set considered.
In such cases, RRM techniques automatically ensure out-of-sample generalization and
provide performance guarantees at learning. The uncertainty sets considered by existing
techniques can include the true underlying distribution in methods that address a trans-
ductive setting (Balsubramani and Freund, 2015, 2016) or utilize Wasserstein distances
(Shafieezadeh-Abadeh et al., 2019; Lee and Raginsky, 2018; Frogner et al., 2021) and
maximum mean discrepancies (Staib and Jegelka, 2019). However, uncertainty sets formed
by distributions with instances’ marginal that coincides with the empirical do not include
the true underlying distribution for finite sets of training samples.

The original 0 -1 loss is utilized by certain RRM techniques (Asif et al., 2015;
Farnia and Tse, 2016; Fathony et al., 2016; Balsubramani and Freund, 2015) which
provided inspiration for the present work. Most of these pioneering techniques con-
sidered uncertainty sets of distributions with instances’ marginal that coincides with
the empirical of training samples, and therefore they do not provide tight performance
guarantees at learning. Such performance guarantees are provided by PAC-Bayes meth-
ods (Ambroladze et al., 2007; Germain et al., 2015; Mhammedi et al., 2019) and RRM
techniques in transductive settings (Balsubramani and Freund, 2015) or based on Wasser-
stein distances (Shafieezadeh-Abadeh et al., 2019; Lee and Raginsky, 2018). PAC-Bayes
methods consider specific classification rules such as margin-based and ensemble-based
classifiers. In addition, the tightness of their performance bounds relies on that of multiple
inequalities including Jensen’s, Markov’s, and Donsker-Varadhan’s change of measure
(Bégin et al., 2016). Wasserstein-based RRM techniques utilize surrogate losses and
consider specific families of rules. In addition, the tightness of their performance bounds
relies heavily on the adequacy of the Wasserstein radius used (Shafieezadeh-Abadeh et al.,
2019; Frogner et al., 2021).
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This paper presents minimax risk classifiers (MRCs) that minimize the worst-case
0 -1 loss over general classification rules and provide tight performance bounds at learn-
ing. Specifically, the main results presented in the paper are as follows.

• We develop learning methods that obtain classification rules with the smallest worst-
case expected 0 -1 loss with respect to uncertainty sets that can include the underlying
distribution, with a tunable confidence (Section 2.2). In addition, we detail how to
determine uncertainty sets from training data by estimating the expectation of a
feature mapping and obtaining confidence vectors for such estimates (Section 3).

• We characterize the performance guarantees of MRCs in terms of tight upper and
lower bounds for the error probability and also in terms of generalization bounds
with respect to the smallest minimax risk (Sections 4.1 and 4.2). In addition, we
show that MRCs are strongly universally consistent using feature mappings given by
characteristic kernels (Section 4.3).

• We present efficient optimization techniques for MRC learning that obtain the clas-
sifiers’ parameters and the tight performance bounds using reduced sets of instances
and efficient accelerated subgradient methods (Section 5). In addition, we quantify
MRCs’ performance with respect to existing techniques and show the suitability of
the performance bounds presented (Section 6).

Some of the results presented in this paper have appeared before in Mazuelas et al.
(2020). The main new results presented in this paper include: extension to instances’ sets
that are general Borel subsets; analysis of the generalization capabilities of the approach
presented even in cases where the underlying distribution is not included in the uncertainty
set considered; universal consistency of the methods proposed using rich feature mappings;
and efficient optimization techniques based on accelerated subgradient methods. Specifically,
the proofs of the theoretical results are extended to allow for infinite sets of instances instead
of finite sets by using Fenchel duality instead of Lagrange duality. The MRCs’ generalization
bounds are extended in new Theorem 7 to cases when the uncertainty set does not include
the underlying distribution, and new Theorem 8 shows the universal consistency of MRCs
that use feature mappings given by characteristic kernels. In addition, new Theorems 9
and 10 show that MRC learning can be efficiently addressed using reduced sets of instances
and subgradient methods that exploit the specific structure of the optimization problems
in MRC learning.

Notation: calligraphic upper case letters denote sets, e.g., Z; |Z| denotes de cardinality
of set Z; vectors and matrices are denoted by bold lower and upper case letters, respectively,
e.g., v and M; for a vector v, ‖v‖, ‖v‖1, and ‖v‖∞ denote its L2-, L1-, and L-infinity norms,
respectively, vT denotes its transpose, v(i) denotes its i-th component, |v| and v+ denote the
vector given by the component-wise absolute value and positive part of v, respectively, and
diag(v) denotes the diagonal matrix with diagonal given by v; probability distributions and
classification rules are denoted by upright fonts, e.g., p and h; Ez∼p or simply Ep denotes
the expectation w.r.t. probability distribution p of random variable z; for a probability
distribution p over X × Y, we denote by px,py its corresponding marginals over X and Y,
respectively, and by px|y the corresponding conditional distribution given y ∈ Y; � and

3



Mazuelas, Romero, and Grünwald

� denote vector (component-wise) inequalities; 1 denotes a vector with all components
equal to 1 and I{·} denotes the indicator function; finally, for a function of two variables
f : X × Y → Z, f(x, ·) denotes the function f(x, ·) : Y → Z obtained by fixing x ∈ X .

2. Minimax risk classifiers

This section first states the problem of supervised classification and summarizes different
learning approaches, then we describe MRCs with 0 -1 loss and their relationship with
existing techniques.

2.1 Problem formulation and learning approaches

Classification techniques assign instances in a set X to labels in a set Y, where X is a Borel
subset of Rd and Y is a finite set represented by {1, 2, . . . , |Y|}. We denote by ∆(X × Y)
the set of Borel probability measures p on X × Y, also referred to as probability distribu-
tions. Both randomized and deterministic classification rules are given by functions from
instances to probability distributions on labels (Markov transitions). We denote the set of
all classification rules by T(X ,Y), and for h ∈ T(X ,Y) we denote by h(y|x) the probabil-
ity with which instance x ∈ X is classified by label y ∈ Y (h(y|x) ∈ {0, 1} if labels are
deterministically assigned to instances).

Supervised classification techniques use n training instance-label pairs
(x1, y1), (x2, y2), . . . , (xn, yn) from the underlying distribution p∗ to find classification
rules that assign labels to instances with small error probability. If p∗ ∈ ∆(X × Y) is the
true underlying distribution of instance-label pairs, the error probability of a classification
rule h ∈ T(X ,Y) is its expected 0 -1 loss denoted by R(h), that is

R(h) = Ep∗{ℓ(h, (x, y))}

with ℓ(h, (x, y)) = 1 − h(y|x) the 0 -1 loss of rule h at instance-label pair (x, y). In the
following, we overload the notation for the loss function and denote the expected loss of h
with respect to probability distribution p as ℓ(h,p) := Ep{ℓ(h, (x, y))}.

The optimal classification rule is the solution of the optimization problem

P
∗ : inf

h∈T(X ,Y)
ℓ(h,p∗). (1)

This solution is known as Bayes classification rule and the minimum value above is known as
Bayes risk. Optimization problem P∗ cannot be addressed in practice since the underlying
distribution p∗ is unknown and only training samples (x1, y1), (x2, y2), . . . , (xn, yn) from p∗

are available.

Existing supervised classification techniques can be interpreted as approximations of
P∗ by an optimization problem of the form

P : inf
h∈F

sup
p∈U

L(h,p) (2)

for F a family of classification rules, U an uncertainty set of distributions, and L a surrogate
loss function.
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The ERM approach considers uncertainty sets of distributions that contain only the
empirical distribution of training samples. In such an approach, the approximation of P∗

by P is controlled by the choice of the family F ⊂ T(X ,Y) through a bias-complexity
trade-off addressed by structural risk minimization (SRM) (Vapnik, 1998). Families of
rules reduced enough to provide uniform convergence of empirical averages can ensure that
the objective function in P uniformly approximates that of P∗, i.e., empirically averaged
losses accurately approximate expected losses for all the rules considered. If the family of
rules is also general enough to contain a classification rule near the Bayes rule, then the
minimum value of P is similar to the minimum value of P∗ and the ERM approach leads to
near-optimal performance. This trade-off for the generality of the family of rules considered
is usually controlled by selecting a parameter that determines the size of the family of rules,
e.g., the radius of the RKHS ball of functions that defines the family of rules.

The RRM approach considers uncertainty sets of distributions determined by constraints
obtained from training samples. In such an approach, the approximation of P∗ by P is
controlled by the choice of the uncertainty set U ⊂ ∆(X × Y). Uncertainty sets general
enough to contain the underlying distribution can ensure that the objective function in
P upper bounds that of P∗, i.e., the worst-case expected loss upper bounds the actual
expected loss for any classification rule. If the uncertainty set is also reduced enough to
provide a tight upper bound, then the minimum value of P is similar to the minimum value
of P∗ and the RRM approach leads to near-optimal performance. This trade-off for the
generality of the uncertainty set considered is usually controlled by selecting a parameter
that determines the size of the uncertainty set, e.g., the radius of the Wasserstein ball that
defines the uncertainty set.

An important advantage of the RRM approach with respect to ERM is that the former
does not require to constrain the classification rules considered in order to provide provable
out-of-sample generalization. Such property is due to the fact that the optimum of P for
RRM upper bounds the expected loss with respect to any distribution in the uncertainty
set, independently of the family of rules considered. On the other hand, the optimum of
P for ERM is ensured to be near the out-of-sample risk only if the family of classification
rules considered provides uniform convergence of empirical averages.

Optimization problem P not only has to reliably approximate P∗ but also has to
be tractable computationally. Such tractability is commonly achieved by 1) considering
families of classification rules determined by certain parameters (e.g., weights of neurons in
NNs or coefficients of linear classifiers), and 2) substituting the 0 -1 loss ℓ by a surrogate
loss L (e.g., hinge-loss or logistic-loss). The usage of non-parametric classification rules
can lead to huge-scale optimization problems (a general rule h ∈ T(X ,Y) is determined by
|X ||Y| values), and the minimization of 0 -1 loss is often NP-hard (see e.g., Ben-David et al.
(2003); Feldman et al. (2012)).

In the following we show how the proposed MRCs approximate the optimization problem
P∗ in (1) by an optimization problem of the form

PMRC : inf
h∈T(X ,Y)

sup
p∈U

ℓ(h,p) (3)

for an uncertainty set U that can include the underlying distribution with a tunable con-
fidence. MRCs do not rely on a choice of surrogate loss and family of rules. The only
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change in PMRC with respect to P∗ consists on using an uncertainty set U instead of the
underlying distribution p∗.

Certain previous RRMs methods also address an optimization problem of the form
(3) (Asif et al., 2015; Fathony et al., 2016). However, the uncertainty sets considered by
such methods only include distributions with instances’ marginals that coincide with the
empirical. With such an additional constraint for the uncertainty set, these approaches
become equivalent to ERM with a surrogate loss referred to as adversarial zero-one loss.
Therefore, their out-of-sample generalization properties are akin to those of other ERM
methods and cannot exploit the RRM’s benefits of approximating P∗ by an upper bound.

2.2 MRCs with 0 -1 loss

The classification loss ℓ(h, (x, y)) of rule h at instance-label pair (x, y) quantifies the loss of
the rule evaluated at instance x ∈ X when the label is y ∈ Y. In this paper we consider
0 -1 loss that is given by ℓ(h, (x, y)) = 1− h(y|x), while MRCs for general loss functions are
described in (Mazuelas et al., 2022). The usage of 0 -1 loss is specially suitable for discrimi-
native approaches since it quantifies the classification error, while other loss functions such
as logistic loss can be more suitable for conditional probability estimation since they score
probability assessments. Specifically, if p∗ is the true underlying distribution of instance-
label pairs, the expected 0 -1 loss ℓ(h,p∗), also referred to as the risk R(h), coincides with
the error probability of classification rule h.

The proposed MRCs minimize the worst-case expected 0 -1 loss with respect to distri-
butions in uncertainty sets that can contain the true underlying distribution with a tunable
confidence. These uncertainty sets are given by constraints on the expectations of a vector-
valued bounded and Borel measurable function Φ : X × Y → R

m referred to as feature
mapping, e.g., multiple polynomials on x and y or one-hot encodings of the last layers in
an NN. Such mappings are commonly used in machine learning to represent instance-label
pairs as real vectors (see e.g., Mohri et al. (2018); Bengio et al. (2013) and next Section 3.1).

In the following we consider uncertainty sets

U =
{
p ∈ ∆(X ,Y) : |Ep{Φ} − τ | � λ

}
(4)

given by a feature mapping Φ together with mean and confidence vectors τ ∈ R
m and

λ ∈ R
m, and satisfying one of the following regularity conditions.

R1 The set X is finite and there exists a probability measure p in U .
R2 There exists a probability measure p in U such that |Ep{Φ(x, y)(i)} − τ (i)| < λ(i) for

any i ∈ {1, 2, . . . ,m} with λ(i) > 0 and

R2.1 λ(i) > 0 for all i ∈ {1, 2, . . . ,m} or
R2.2 the support of the r.v. Φ(x, y) for (x, y) ∼ p is not contained in a proper affine

subspace of Rm.

These regularity conditions are utilized to ensure strong duality holds for the inner
maximization in the minimax problems, and they are satisfied with wide generality. For
instance, such conditions are satisfied if there exists a probability measure p such that
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Ep{Φ} = τ and {Φ(xi, yi), i = 1, 2, . . . , n} is not contained in a proper subspace of Rm.
In addition, if those n points are contained in a proper affine subspace Γ ⊂ R

m with
dimΓ = m′ < m the feature mapping could be easily modified so that R2.2 is satisfied for
instance by using

Φ′(x, y) =
(
(Φ(x, y)− z0)

Tv1, (Φ(x, y)− z0)
Tv2, . . . , (Φ(x, y)− z0)

Tvm′

)
∈ R

m′

where Γ = {z0 + α1v1 + α2v2 + . . .+ αm′vm′ ;α1, α2, . . . , αm′ ∈ R}.
The mean vector τ ∈ R

m in (4) is an estimate of the feature mapping expectation
Ep∗{Φ} with respect to the underlying distribution. In this paper, we consider expectation
estimates obtained as the sample average

τn =
1

n

n∑

i=1

Φ(xi, yi) (5)

obtained from the n training samples (x1, y1), (x2, y2), . . . , (xn, yn) that are assumed to be
independent samples from the underlying distribution p∗. Nevertheless, it is important
to note that most of the results presented in the paper as well as the general methodology
proposed can be utilized with general types of expectation estimates. Alternative estimators
for the expectation can be preferred in several practical scenarios including cases with
different distributions at training and test (Mohri and Medina, 2012; Mazuelas and Perez,
2020; Álvarez et al., 2022) and cases where the distribution of features has heavy tails
(Lugosi and Mendelson, 2019; Hsu and Sabato, 2016).

The confidence vector λ ∈ R
m in (4) is an estimate of the mean vector component-wise

accuracy |Ep∗{Φ}−τ |, and controls the size of the uncertainty set considered. In particular,
if λ corresponds to the length of confidence intervals at level 1− δ centered at τ , then the
true underlying distribution is included in the uncertainty set (4) with probability at least
1 − δ. Section 3.2 describes how to choose such confidence vectors for different feature
mappings.

Classification rules that minimize the worst-case error probability over uncertainty sets
U given by (4) are referred to as MRCs.

Definition 1 We say that a classification rule hU is a 0 -1 MRC for uncertainty set U if

hU ∈ arg inf
h∈T(X ,Y)

sup
p∈U

ℓ(h,p)

and we denote by R(U) the minimax risk against U , i.e.,

R(U) = inf
h∈T(X ,Y)

sup
p∈U

ℓ(h,p).

The following result shows how 0 -1 MRCs can be determined by a linear-affine com-
bination of the feature mapping. The coefficients of such combination can be obtained at
learning by solving the convex optimization problem

Pτ ,λ : min
µ

1− τTµ+ ϕ(µ) + λT|µ| (6)
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where1

ϕ(µ) = sup
x∈X ,C⊆Y

∑
y∈C Φ(x, y)

Tµ− 1

|C| . (7)

Theorem 2 Let U be an uncertainty set as in (4) that satisfies R1 or R2 and µ∗ be a
solution of optimization problem Pτ ,λ. If a classification rule hU ∈ T(X ,Y) satisfies

hU(y|x) ≥ Φ(x, y)Tµ∗ − ϕ(µ∗), ∀x ∈ X , y ∈ Y (8)

then hU is a 0 -1 MRC for U . In addition, we have that

R(U) = 1− τTµ∗ + ϕ(µ∗) + λT|µ∗|. (9)

Proof See Appendix B.

A classification rule satisfying (8) always exists because for every x ∈ X the sum over
y ∈ Y of the positive part of the right hand side of (8) is not larger than one. Specifically,
for any x ∈ X , the number

cx =
∑

y∈Y

(
Φ(x, y)Tµ∗ − ϕ(µ∗)

)
+

(10)

is zero or equal to

max
C⊆Y

∑

y∈C

Φ(x, y)Tµ∗ − |C|ϕ(µ∗)

that is not larger than one by definition of ϕ(·) in (7).

The characterization of MRCs in terms of the inequality in (8) may seem counter-
intuitive because for some pairs (x, y) such classification rules are not uniquely determined.
However, such pairs do not affect the worst-case error probability. Specifically, the set of
pairs (x, y) where (8) is not satisfied with equality has zero probability under a worst-case
distribution in U because for pU ∈ U

inf
h∈T(X ,Y)

sup
p∈U

ℓ(h,p) = ℓ(hU ,pU)

⇒ 1−
∫

hU(y|x)dpU(x, y) = 1− τTµ∗ + λT|µ∗|+ ϕ(µ∗)

⇒
∫

hU(y|x)−
(
Φ(x, y)Tµ∗ − ϕ(µ∗)

)
dpU(x, y) =

(
τ − EpUΦ(x, y)

)T
µ∗ − λT|µ∗|

⇒
∫

hU(y|x)−
(
Φ(x, y)Tµ∗ − ϕ(µ∗)

)
dpU(x, y) = 0.

since pU ∈ U ⇒
(
τ − EpUΦ(x, y)

)T
µ∗ − λT|µ∗| ≤ 0.

1. Here, as in the sequel, we implicitly assume that the set C ⊆ Y over which we take the maximum excludes
the empty set.
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In order to avoid ambiguities, we will refer to 0 -1 MRC for uncertainty set U as the
classification rule hU obtained by normalizing the positive part of the right hand side of (8).
Specifically, let for x ∈ X

hU(y|x) =
{

(Φ(x, y)Tµ∗ − ϕ(µ∗))+/cx if cx 6= 0
1/|Y| if cx = 0

(11)

with cx given by (10). Such classification rule is univocally determined by µ∗ and satisfies (8)
because cx ≤ 1 for any x ∈ X . In addition, we denote by hU

d the deterministic classification
rule corresponding to hU , that is

hU

d(y|x) = I{y ∈ argmaxhU(·|x)} = I{y ∈ argmaxΦ(x, ·)Tµ∗} (12)

where a tie in the argmax above can be resolved arbitrarily. In the following, we will refer
to such classification rule hU

d as the deterministic 0 -1 MRC for U .
The above Theorem 2 provides a representer theorem for MRCs. The classical repre-

senter theorem for ERM over RKHSs (see e.g., Mohri et al. (2018); Evgeniou et al. (2000))
states that the solution of ERM over the set of classification rules given by functions in
an RKHS ball is determined by a linear combination of n functions corresponding with
the training samples. Such result enables to address the minimization of empirical loss
over an infinite-dimensional RKHS because it becomes equivalent to a minimization over n
parameters. Analogously, Theorem 2 states that the solution of PMRC over the set of all
classification rules is determined by a linear-affine combination of the m components of the
feature mapping. Even if the optimization problem addressed by MRCs does not impose
constraints on the classification rules considered, the feature mapping utilized determines
the parametric form of its solutions. Theorem 2 enables to address the minimization of the
worst-case error probability over general classification rules since it becomes equivalent to
a minimization over the m parameters µ. As shown in Section 5 below, optimization (6)
can be efficiently addressed in practice. In particular, Theorem 9 shows that the set X in
(7) can be substituted by a reduced set of instances such as that formed by the instances
at training.

Note also that MRCs are often given by sparse combinations of the components of
the feature mapping since the last term in optimization problem (6) imposes an L1-type
regularization for parameters. L1-norm regularization is broadly used in machine learning
(see e.g., Hastie et al. (2019); Mohri et al. (2018); Mol et al. (2009)) and the regularization
parameter used to weight the L1-norm is commonly obtained by cross-validation methods.
The result in Theorem 2 can directly provide appropriate regularization parameters from
the length of the expectations’ interval estimates. In addition, the regularization term
λT|µ| =∑m

i=1 λ
(i)|µ(i)| in (6) allows to penalize differently each component of µ. Such type

of L1-norm regularization is usually referred to as adaptive or weighted, and has shown
to significantly improve performance (Zou, 2006; Candès et al., 2008). For MRCs, the
regularization term causes that feature components with poorly estimated expectations (i.e.,
components Φ(i) with large λ(i)) have a reduced or null influence on the final classification
rule.
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2.3 MRCs with 0 -1 loss and fixed marginals

The following result shows how existing RRM methods that utilize 0-1 loss correspond
to MRCs that use uncertainty sets of distributions with instances’ marginal given by the
empirical distribution. In particular, such MRCs correspond to L1-regularized ERM with
a loss referred to as adversarial zero-one in Fathony et al. (2016) or as minimax hinge in
Farnia and Tse (2016).

For the following result we consider uncertainty sets of the form

V =
{
p ∈ ∆(X ,Y) : |Ep{Φ} − τ | � λ and px = pnx

}
(13)

where pnx is the uniform distribution over instances with support {x1, x2, . . . , xn} ⊂ X for
n specific instances.

Theorem 3 Let τ ,λ ∈ R
m be such that the uncertainty set V in (13) is not empty. If µ∗

is a solution of the optimization problem

min
µ

1− τTµ+
1

n

n∑

i=1

ϕ(µ, xi) + λT|µ| (14)

where

ϕ(µ, x) = max
C⊆Y

∑
y∈C Φ(x, y)

Tµ− 1

|C|
and hV is the classification rule

hV(y|x) =
(
Φ(x, y)Tµ∗ −ϕ(µ∗, x)

)
+
, ∀x ∈ X , y ∈ Y (15)

then, hV is a 0 -1 MRC for V, that is
hV ∈ arg inf

h∈T(X ,Y)
sup
p∈V

ℓ(h,p).

Proof See Appendix C.

If the instances {x1, x2, . . . , xn} are those obtained at training, the 0 -1 MRCs for un-
certainty sets given by both expectations and marginals constrains as in (13) correspond to
existing techniques known as maximum entropy machines (Farnia and Tse, 2016) or zero-
one adversarial (Fathony et al., 2016). Specifically, if {(xi, yi)}ni=1 are training samples and
τ is given by (5), then optimization problem (14) becomes

min
µ

1

n

n∑

i=1

max
C⊆Y

∑
y∈C(Φ(xi, y)− Φ(xi, yi))

Tµ+ |C| − 1

|C| + λT|µ|

that corresponds to L1-regularized ERM with a loss referred to as minimax hinge in
Farnia and Tse (2016) or as adversarial zero-one in Fathony et al. (2016).

Uncertainty sets V given by (13) do not contain the true underlying distribution for a
finite number of training samples since such sets only contain distributions with instances’
marginal that is uniform over the training instances. Hence, the usage of such uncertainty
sets does not allow to obtain the performance guarantees shown in Section 4 below for
uncertainty sets given by (4).

10
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3. Uncertainty sets of distributions

As described above, MRC classification rules have the smallest worst-case error probability
over distributions in an uncertainty set. This set is determined by expectations estimates
of a feature mapping. In this section we first describe common feature mappings and then
characterize the accuracy of expectation estimates obtained from training samples.

3.1 Feature mappings

Most of the results presented in the paper are valid for general feature mappings
Φ : X × Y → R

m. In this section we describe feature mappings that are common in
supervised classification and will be used later in the paper. Such feature mappings are
given by real-valued functions over the set of instances ψ : X → R, referred to as scalar
features. The most common and simple way to define feature mappings over X and Y is
to use multiple scalar features over X together with a one-hot encoding of the elements of
Y (Tsochantaridis et al., 2005; Crammer et al., 2006; Mohri et al., 2018) as follows

Φ(x, y) = [I{y = 1}Ψ(x)T, I{y = 2}Ψ(x)T, . . . , I{y = |Y|}Ψ(x)T]T = ey ⊗Ψ(x) (16)

where Ψ(x) = [ψ1(x), ψ2(x), . . . , ψD(x)]
T for D scalar features ψ1, ψ2, . . . , ψD, ey is the y-th

vector in the standard basis of R|Y|, and ⊗ denotes the Kronecker product. The feature
mapping Φ represents each instance-label pair (x, y) by an m-dimensional real vector with
m = |Y|D, so that Φ(x, y) is composed by |Y| D-dimensional blocks with values Ψ(x)
in the block corresponding to y and zero otherwise. Other feature mappings can exploit
relationships among classes as described for instance in Bakir et al. (2007); Caponnetto et al.
(2008).

Multiple types of scalar features are commonly used in supervised classification
including those given by thresholds/decision stumps (Lebanon and Lafferty, 2001), last
layers in an NN (Bengio et al., 2013), and random features corresponding to a RKHS
(Rahimi and Recht, 2008). Most of the results shown in this paper are valid for general
features, while for those showing the universal consistency of MRCs we use random features
that embed instances into rich feature spaces corresponding to RKHSs.

3.2 Confidence vectors for expectation estimates

In this section, we describe conditions for confidence vectors λ that lead to uncertainty sets
given by (4) that contain the true underlying distribution with high probability. Specifically,
we consider uncertainty sets U given by feature mappings defined by (16) using scalar
features in a family F together with mean vectors obtained as in (5) using the sample
average of n independent samples from the underlying distribution p∗.

We denote by λδ any confidence vector that has coverage probability at least 1− δ, i.e.,
P{|Ep∗{Φ} − τ | � λδ} ≥ 1 − δ, so that the underlying distribution p∗ is included with
probability at least 1− δ in the uncertainty set given by λδ. The following result describes
such confidence vectors in terms of the cardinality |F|, the empirical variance of the feature
mapping, and the Rademacher complexity Rn(F). In most of the results in the paper, we
utilize feature mappings given by scalar features chosen before the training samples are
observed. In such cases, appropriate confidence vectors are given in terms of the cardinality

11
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|F|, i.e., the number of scalar features used. However, the methods proposed can also be
used with data-dependent feature mappings. In such cases, appropriate confidence vectors
are given in terms of the Rademacher complexity Rn(F) where F is the family of candidate
scalar features. For instance, F can be family of all decision stumps and the feature mapping
can be defined using the decision stumps found by one-dimensional decision trees learned
using the training samples, as in Mazuelas et al. (2020).

Theorem 4 Let the mean vector be given by τ = τn as in (5) for n training samples, and
F be a family of bounded scalar features, that is |ψ(x)| ≤ C for all ψ ∈ F and x ∈ X .

If |F| <∞, λ
(i)
δ for i = 1, 2, . . . ,m can be taken as

λ
(i)
δ = C

√
2 log 2|F||Y|/δ

n
. (17)

In addition, if υ
(i)
n is the sample variance of the i-th component of Φ, λ

(i)
δ for i = 1, 2, . . . ,m

can be taken as

λ
(i)
δ = 2C

√
2υ

(i)
n log 4|F||Y|/δ

n
+

14C log 4|F||Y|/δ
3(n − 1)

. (18)

If the Rademacher complexity of F satisfies Rn(F) ≤ R/
√
n, λ

(i)
δ for i = 1, 2, . . . ,m can

be taken as

λ
(i)
δ = 2

√
nj(i)

n

R√
n
+ C

(
1 + 2

√
nj(i)

n

)√
log 4|Y|/δ

2n
(19)

where j(i) denotes the label for which the i-th component of Φ is non-zero, and nj denotes
the number of samples with label j ∈ Y.

Proof See Appendix D.

The previous result shows how to obtain uncertainty sets U as in (4) that contain the
true underlying distribution with high probability. Data-based tight confidence vectors can
be obtained using sample standard deviations as shown in (18). Note that sample standard
deviations can also be used to determine confidence vectors for infinite families of scalar
features by using their growth function (Maurer and Pontil, 2009).

Theorem 4 shows that confidence vectors λ can decrease at a rate O(1/√n) using gen-
eral bounded features. Such rate can be obtained similarly with unbounded sub-Gaussian
features (Wainwright, 2019) and also with heavy-tailed features by using robust estimators
for expectations (Lugosi and Mendelson, 2019). In addition, the order O(

√
log(|F|)/n) for

λ in the above result is consistent with that shown to provide consistent estimators using
L1-regularization (Bühlmann and van de Geer, 2011).

12
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4. Performance guarantees

This section characterizes the out-of-sample performance of 0 -1 MRCs. We first present
techniques that provide tight performance bounds at learning, then we show finite-sample
generalization bounds for MRCs. In particular, we show that the proposed techniques can
provide strong universal consistency using rich feature representations.

4.1 Tight performance bounds

The following result shows that the proposed approach allows to obtain upper and lower
bounds for expected losses by solving convex optimization problems.

Theorem 5 Let U be an uncertainty set given by (4), h be any classification rule, and
R(U ,h) and R(U ,h) be given by

R(U ,h) = sup
µ

1− τTµ+ inf
x∈X ,y∈Y

{Φ(x, y)Tµ− h(y|x)} − λT|µ| (20)

R(U ,h) = inf
µ

1− τTµ+ sup
x∈X ,y∈Y

{Φ(x, y)Tµ− h(y|x)}+ λT|µ|. (21)

Then, for any p ∈ U we have that R(U ,h) ≤ ℓ(h,p) ≤ R(U ,h). In addition, if U satisfies
R1 or R2 the optimal values in (20) and (21) are attained.

Proof See Appendix E.

The techniques proposed in (Duchi et al., 2021; Shafieezadeh-Abadeh et al., 2015, 2019)
obtain upper and lower bounds corresponding with RRM methods that use uncertainty
sets defined in terms of f-divergences and Wasserstein distances. Such methods obtain
classification rules by minimizing the upper bound of a surrogate expected loss while MRCs
minimize the upper bound of the 0 -1 expected loss (error probability). The bounds in
(Duchi et al., 2021; Shafieezadeh-Abadeh et al., 2015, 2019) as well as those in Theorem 5
become bounds for the true expected loss (risk) if the uncertainty set considered includes the
true underlying distribution. Such situation can be attained with a tunable confidence using
uncertainty sets defined by Wasserstein distances as in (Shafieezadeh-Abadeh et al., 2015,
2019) or using the proposed uncertainty sets in (4) with expectation confidence intervals.

The above theorem provides lower and upper bounds for the error probability of any
classification rule. These bounds can be determined by solving the two convex optimization
problems (20) and (21). As shown below, the upper bound for MRCs is obtained as a
by-product of the learning process that solves optimization (6).

Corollary 6 Let hU be a 0 -1 MRC for an uncertainty set U that satisfies R1 or R2, then
R(U ,hU) = R(U) given by (9).

Proof Straightforward consequence of the above results since

R(U ,hU) = sup
p∈U

ℓ(hU ,p) = inf
h∈T(X ,Y)

sup
p∈U

ℓ(h,p) = R(U)
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In order to simplify notation, we will denote R(U) := R(U ,hU) for an MRC hU given
by (11). Tight performance bounds can also be obtained at learning for deterministic 0 -1
MRCs. Specifically, such bounds are given by R(U ,hU

d) and R(U ,hU

d) that are obtained by
solving the two optimization problems (20) and (21).

The next section provides generalization bounds for 0 -1 MRCs. Such bounds also ensure
generalization for deterministic 0 -1 MRCs because R(hU

d) ≤ 2R(hU) as a direct consequence
of the fact that

1− hU

d(y|x) ≤ 2(1− hU(y|x)), ∀x, y ∈ X × Y.

4.2 Finite-sample generalization bounds

This section provides MRCs’ generalization bounds in terms of optimal minimax rules, i.e.,
MRCs with the smallest minimax risk. Such rules correspond with uncertainty sets given
by the true expectation of the feature mapping Φ, that is

U∞ = {p ∈ ∆(X × Y) : Ep{Φ(x, y)} = τ∞} (22)

where the mean vector τ∞ = Ep∗{Φ(x, y)} is the exact expectation with respect to the
underlying distribution. The minimum wost-case error probability (minimax risk) over
distributions in U∞ is given by

RΦ = min
µ

1− τT
∞µ+ ϕ(µ) = 1− τT

∞µ∞ + ϕ(µ∞)

corresponding with the MRC given by parameters µ∞. Such classification rule is referred
to as the optimal minimax rule for feature mapping Φ because for any uncertainty set U
given by (4) that contains the underlying distribution p∗, we have that U∞ ⊂ U and hence
RΦ ≤ R(U). The optimal minimax rule could only be obtained by an exact estimation of
the expectation of the feature mapping Φ that in turn would require an infinite amount of
training samples.

The following result provides generalization bounds for MRCs in terms of excess error
probability with respect to the minimax risk at learning and the smallest minimax risk for
the feature mapping used.

Theorem 7 Let U and U∞ be uncertainty sets given by (4) and (22), respectively, that
satisfy R1 or R2. If hU is a 0 -1 MRC for uncertainty set U , we have that

R(hU) ≤ R(U) + (|τ∞ − τ | − λ)T|µ∗| (23)

R(hU) ≥ R(U)− (|τ∞ − τ | − λ)T|µ| (24)

R(hU) ≤ RΦ + |τ∞ − τ |T|µ∞ − µ∗|+ λT(|µ∞| − |µ∗|) (25)

with µ∗ and µ solutions to (6) and (20), respectively. In particular, if λ is a confidence
vector with coverage probability 1− δ, i.e., P{|τ∞ − τ | � λ} ≥ 1− δ, then, we have that

R(U) ≤ R(hU) ≤ R(U) (26)

R(hU) ≤ RΦ + 2λT|µ∞| ≤ RΦ + 2‖λ‖∞‖µ∞‖1. (27)

with probability at least 1− δ.
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Proof See Appendix F.

Inequalities (23), (24), and (26) bound MRCs’ probabilities of error w.r.t. the corre-
sponding minimax error probability R(U) and lower bound R(U). Such quantities can
be obtained at learning, R(U) is given as a byproduct of the learning process that solves
optimization Pτ ,λ in (6) while R(U) requires to solve an additional convex optimization
problem given by (20). Inequalities (25) and (27) bound MRCs’ probabilities of error w.r.t.
the smallest minimax risk RΦ. As shown in the next section, this smallest minimax risk
becomes the Bayes risk using rich feature mappings so that such generalization bounds
enable to prove universal consistency results for MRCs.

The generalization bounds in the above result depend on the accuracy of mean vector
estimates and on the confidence vector used. Several important conclusions can be drawn
from such bounds:

• The excess error probability with respect to minimax risks decreases at the same
rate as the error of the mean vector estimates. As shown in Theorem 4, with wide
generality the bounds in the above theorem show differences that decrease with n
at a rate O(1/√n) using mean vector estimates given by sample averages as in (5).
Methods that utilize 0 -1 loss but consider uncertainty sets with fixed marginals pro-
vide significantly coarser performance guarantees. In particular, the bounds in The-
orem 3 of Farnia and Tse (2016) are O(1/ε√n) where ε describes the norm of the
error in sample mean estimates, which is commonly ε = O(1/√n). In addition, RRM
methods based on Wasserstein distances achieve generalization bounds that decrease
with n at a rate O(1/n1/d) that deteriorates with the instances’ dimensionality d
(Shafieezadeh-Abadeh et al., 2019; Frogner et al., 2021).

• MRCs do not heavily rely on the choice of confidence vectors. For a given mean
vector τ , the upper bound in (23) takes its smallest value for the MRC corresponding
with the confidence vector λ given by the error |τ∞− τ | in the mean vector estimate.
Specifically, if Ue is the uncertainty set given by (4) with mean vector τ and confidence
vector λ = |τ∞−τ |, the upper bound in (23) becomes R(Ue), and, for any uncertainty
set U given by (4) with mean vector τ , we have that

R(Ue) = min
µ

1− τTµ+ ϕ(µ) + |τ∞ − τ |T|µ|

≤ 1− τTµ∗ + ϕ(µ∗) + λT|µ∗|+ (|τ∞ − τ | − λ)T|µ∗|
= R(U) + (|τ∞ − τ | − λ)T|µ∗|

with µ∗ solution of (6) for uncertainty set U .
Near-optimal generalization bounds can be obtained using confidence vectors that
approximate |τ∞ − τ |. Specifically, for any uncertainty set U as above, we have that

R(Ue) ≤ R(U) + (|τ∞ − τ | − λ)T|µ∗|
= 1− τTµ∗ + ϕ(µ∗) + |τ∞ − τ |T|µ∗|
≤ 1− τTµe + ϕ(µe) + λT|µe|+ (|τ∞ − τ | − λ)T|µ∗|
= R(Ue) + (|τ∞ − τ | − λ)T(|µ∗| − |µe|)

15



Mazuelas, Romero, and Grünwald

with µe solution of (6) for uncertainty set Ue. Therefore, the difference between the
upper bound in (23) for uncertainty set U and the smallest upper bound R(Ue) is
bounded by (|τ∞ − τ | − λ)T(|µ∗| − |µe|), and both terms in such scalar product are
small when λ ≈ |τ∞ − τ |.

• The minimax risk optimized at learning can offer an adequate assessment of the MRC’s
error probability even if the uncertainty set used does not include the underlying
distribution. Such minimax risk R(U) obtained as a byproduct of the learning pro-
cess provides valid upper bounds for the error probability of MRCs in cases where
|τ∞ − τ | � λ, i.e., p∗ ∈ U . As shown in (23) and (24), R(U) and R(U) still provide
approximate bounds in other cases as long as the confidence vector is not significantly
smaller than the error in the mean vector estimates.

• High-confidence upper and lower bounds for error probabilities can be obtained using
confidence vectors with high coverage probability. Such confidence vectors can be
obtained using the expressions in Theorem 4 or numerical methods such as those
proposed in Waudby-Smith and Ramdas (2023). Those vectors may not be adequate
for MRC learning since they are often much larger than |τ∞ − τ |. Notice that a
confidence vector λδ that ensures {λδ � |τ∞ − τ |} occurs with high probability for
any underlying distribution is likely to be much larger than |τ∞ − τ | for a particular
training set drawn from a specific underlying distribution. However, confidence vectors
with high coverage probability can be used to obtain error probability bounds for
general MRCs that are valid with probability at least 1 − δ. A simple way to get
such bounds from R(U) and R(U) corresponding with a confidence vector λ follows
by noticing that (23) and (24) imply that

R(U)− (λδ − λ)T|µ| ≤ R(hU) ≤ R(U) + (λδ − λ)T|µ∗| (28)

with probability at least 1 − δ because λδ � |τ∞ − τ | with that probability. An-
other way to obtain high-confidence bounds follows by solving the convex optimiza-
tion problems in Theorem 5 for the MRC corresponding to λ and the uncertainty set
corresponding to λδ.

Theorem 7 and the above discussion exhibit the different roles played by confidence
vectors that aim to bound the error in mean vector estimates with high probability for any
probability distribution versus those that only aim to approximate such error. The former
can be used to obtain provably valid performance guarantees while the later can be used to
obtain small error probability and approximate performance bounds. Such roles are further
studied numerically in Section 6 using multiple real datasets.

The improved performance of methods that use aggressively chosen parameters has been
observed in multiple fields of machine learning. For instance, in on-line learning methods,
the theoretical prescriptions for learning rates that lead to valid prediction guarantees are
routinely outperformed by choices that minimize prediction error on the data seen so far but
have worse guarantees (see e.g., Devaine et al. (2013)). This phenomenon is related to the
fact that in-expectation generalization bounds can be significantly better than in-probability
generalization bounds, and it is further explored in a PAC-Bayes setting by Grünwald et al.
(2021). The generalization bounds in Theorem 7 shed light on such phenomenon for the
proposed MRCs.
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4.3 Universal consistency

We show next that MRCs can be strongly universally consistent using rich feature mappings,
that is, as the training size grows, the MRC’s error probability tends to the Bayes risk with
probability one for any underlying distribution.

The theorem below shows universal consistency for MRCs given by feature mappings de-
termined by random features corresponding with rich RKHSs (see e.g., Rahimi and Recht
(2008); Bach (2017)). Specifically, let v1, v2, . . . be a sequence of i.i.d. samples from dis-
tribution p(v) generating random features ψv : X → R for kernel k : X × X → R, that
is

Ep(v){ψv(x)ψv(x
′)} = k(x, x′), ∀x, x′ ∈ X .

In addition, for n = 1, 2, . . . the feature map Φn is defined by the Dn random features
ψv1 , ψv2 , . . . , ψvDn

as

Φn(x, y) = ey ⊗ [1, ψv1(x), ψv2(x), . . . , ψvDn
(x)]T. (29)

Using such feature mappings, we have the following result.

Theorem 8 For n = 1, 2, . . ., let hn be an MRC for uncertainty set Un given by (4) with
Φ = Φn as in (29), τ = τn as in (5) and λ = λn � 0.

If we have that

(1) k : X ×X → R is a characteristic kernel,

(2) scalar features are bounded, i.e., there exists C > 0 such that |ψv(x)| < C for all v
and x,

(3) the number of random features Dn defining the feature mapping Φn is non-decreasing
and tends to infinity, and

(4) any component of {λn} is non-increasing and tends to 0.

Then, the sequence of smallest minimax risks {RΦn} tends to the Bayes risk RBayes with
probability one for any underlying distribution p∗.

If, in addition to (1)-(4), we have that

(5) any component of {λn

√
n/ log n} tends to ∞, and

(6) Dn = O(nk) for some k > 0.

Then, the sequence of MRCs’ probabilities of error {R(hn)} tends to the Bayes risk RBayes

with probability one for any underlying distribution p∗.

Proof See Appendix G.

The conditions under which MRCs are strongly universally consistent are analogous to
those corresponding to conventional ERM methods based on SRM and RKHSs (Steinwart,
2005; Zhang, 2004), e.g., regularization parameters that tend to zero not very quickly and
broad RKHSs. The universal consistency in ERM techniques is achieved using RKHSs given
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by universal kernels while the theorem above uses characteristic kernels, which is in general
a slightly weaker condition (Muandet et al., 2017). In addition, the result above provides
MRCs’ universal consistency for binary and multiclass cases and does not rely on surrogate
losses.

Notice that for ERM methods based on SRM, the decrease of the regularization parame-
ter for increasing number of samples corresponds to consider broader families of rules (balls
in the RKHS with increased radius). On the other hand, for the proposed approach, such
decrease corresponds to consider reduced uncertainty sets. This fact illustrates how the
bias-complexity trade-off addressed in the SRM approach by controlling the generality of
the family of classification rules is analogous to controlling the generality of the uncertainty
set of probability distributions in the proposed approach (see also discussion in Section 2.1
above). In paticular, the conditions (5) and (6) in Theorem 8 result in uncertainty sets that
shrink as we get more samples but contain the underlying distribution with high probability.

5. Efficient learning of MRCs

The learning stage for MRCs consists on solving optimization problem (6) that obtains the
parameters for hU and hU

d as well as the minimax risk R(U). This stage can be comple-
mented by solving optimization problems (20) and (21) that can provide tight performance
guarantees. In this section we first show that such optimization problems can be simplified
by using a reduced instances’ set given by instances’ samples. We then propose efficient
subgradient methods that take advantage of the specific structure of the above mentioned
optimization problems.

5.1 Reduced instances’ set

Solving the optimization problems that learn MRCs and obtain their performance bounds
can be inefficient in cases where the feature mapping range {Φ(x, y) : x ∈ X , y ∈ Y} has a
large cardinality, since the evaluation of objective functions in (6), (20) and (21) may require
to search over such a range. The next result shows that this difficulty can be avoided by
using instances’ samples instead of the whole set X , e.g., using the instances obtained at
training.

Theorem 9 Let Xs = {x1, x2, . . . , xs} be s i.i.d. instances from the underlying distribution
p∗(x), hs, Rs(U), and Rs(U) be the MRC and bounds obtained by solving (6) and (20) using
Xs instead of X . If Rs(U) is finite and p∗ ∈ U with probability at least 1− δ, we have that

Rs(U)− εs(2C‖µl‖1 + 1) ≤ R(hs) ≤ Rs(U) + εs(2C‖µu‖1 + 1) ≤ R(U) + εs(2C‖µu‖1 + 1)

with probability at least 1− 2δ, where µl and µu are the solutions of (20) and (21), respec-
tively, using Xs instead of X , ‖Φ(x, y)‖∞ ≤ C, ∀x ∈ X , y ∈ Y, and εs is given by

εs = 6|Y|
√

4 + |Y|(m + 1) log s+ log |Y|/δ
s

.

Proof See Appendix H.
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The above result shows that a sufficiently large set of instances’ samples Xs can be safely
used instead of the whole set X in optimization problems (6) and (20) since the subsequent
approximation error is O(

√
log(s)/s). An analogous result can be obtained for deterministic

MRCs and (21) using the same arguments as in Appendix H for the above result.
The condition |Rs(U)| <∞ can be easily satisfied in practice. Such condition is equiva-

lent to
Us =

{
p ∈ ∆(Xs × Y) : |Ep{Φ} − τ | � λ

}
6= ∅

that is directly achieved if τ is obtained as the sample mean of samples with instances Xs.
In other cases, it can be ensured that such uncertainty set is not empty by increasing the
confidence vector and shifting the mean vector. In particular, if λ∗

1 and λ∗
2 are solutions of

the linear optimization problem

min
p,λ1,λ2

1T(λ1 + λ2)

s.t. τ − λ1 �
∑

x∈Xs,y∈Y

p(x, y)Φ(x, y) � τ + λ2

λ1 � λ,λ2 � λ,p ∈ ∆(Xs × Y)

with 2m+ s|Y| variables and 4m + s|Y|+ 1 constraints. Then, taking τ̃ = τ +
λ∗
2
−λ∗

1

2 and

λ̃ =
λ∗
1
+λ∗

2

2 � λ we have that

Us ⊆ Ũs =
{
p ∈ ∆(Xs × Y) : |Ep{Φ} − τ̃ | � λ̃

}
6= ∅.

The numerical results of next Section 6 show that the optimization problems for MRC
learning can be accurately solved in practice using quite reduced sets of instances. In
particular, such results show that the set of instances X in optimization problems (6), (20),
and (21) can be taken as the set Xn = {x1, x2, . . . , xn} of instances obtained at training.

5.2 Efficient optimization

This section presents efficient optimization techniques for MRC learning that comprises to
solve problems (6), (20) and (21). These three problems can be written as:

min
µ

f(µ) := aTµ+ λT|µ|+max{Fµ+ b} (30)

with a ∈ R
m, b ∈ R

p and F ∈ R
p×m. The size of vector a and the number of columns of

matrix F, m, equals the number of components of the feature mapping Φ : X × Y → R
m,

while the size of vector b and the number of rows of matrix F, p, is given by the number
of instances Xs used to evaluate ϕ, e.g., the number of instances at training. Specifically, p
equals s(2|Y| − 1) in problem (6), and s|Y| in problems (20) and (21).

The optimization problem (30) can be reformulated as the linear program (LP)

min
µ1,µ2

aT(µ1 − µ2) + λT(µ1 + µ2) + ν

s.t. Fµ1 − Fµ2 + b � ν1
µ1,µ2 � 0

(31)
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by introducing new variables ν ∈ R and µ1,µ2 ∈ R
m with µ = µ1 − µ2. Such an LP

has p + 2m constraints and 2m + 1 variables, and can be solved with high accuracy by
off-the-shelf solvers at the expenses of a high computational time in cases where p or m is
large.

Problem (30) belongs to the class of nondifferentiable convex optimization problems
with subgradients that are uniformly bounded. The subgradient methods (SMs) are often
an attractive option to solve this class of problems since they can efficiently provide solutions
with adequate accuracy (Bertsekas, 2015). A subgradient of the objective function f in (30)
at point µ can be directly obtained from the maximum of vector v = Fµ+ b. Specifically,
if i(µ) ∈ argmaxv we have that a subgradient of f at µ is given by

g(µ) = a+ λ⊙ sign(µ) + coli(µ)(F
T) (32)

where ⊙ denotes the Hadamard product, sign(µ) denotes the vector given by the signs of
the components of µ, and coli(·) denotes the i-th column of the argument.

Often, the main limitation of SMs is the large number of iterations required. The
accelerated subgradient methods (ASMs) (Nesterov and Shikhman, 2015; Tao et al., 2020)
have been developed to reduce the number of iterations by using the Nesterov’s extrapolation
strategy (Nesterov, 1983). In particular, Algorithm 1 describes the application of the ASM
proposed in Tao et al. (2020) to problem (30) for MRC learning.

Algorithm 1 – ASM for MRC learning

Output: approximate solution µ∗

1: Initialize µ1 and take c1 = θ1 = 1, η1 = 0

2: y1 ← µ1, v1 ← Fµ1 + b, i1 ← argmaxv1, µ
∗ ← µ1, f

∗ ← aTµ1 + λT|µ1|+ v
(i1)
1

3: for k = 1, 2, . . . do

4: gk ← a+ λ⊙ sign(µk) + colik(F
T)

5: yk+1 ← µk − ckgk, µk+1 ← (1 + ηk)yk+1 − ηkyk

6: vk+1 ← Fµk+1 + b, ik+1 ← argmaxvk+1

7: ck+1 ← (k + 1)−3/2, θk+1 ← 2
k+1 , ηk+1 ← θk+1

(
1
θk
− 1
)

8: fk+1 ← aTµk+1 + λT|µk+1|+ v
(ik+1)
k+1

9: if fk+1 < f∗ then

10: f∗ ← fk+1, µ
∗ ← µk+1

11: end if

12: end for

The time complexity per iteration of the SMs described above can be high in cases
where p or m is large. This computational cost is due to the fact that the subgradient
g(µk) is computed by evaluating vk = Fµk + b that requires pm multiplications. Such
computation can be carried out in a significantly more efficient manner by exploiting the
specific structure of the subgradient. The vector vk can be efficiently computed from vk−1

because we have that

Fg(µk−1) = Fa+ Fdiag(λ)sign(µk−1) + coli(µk−1)
(FFT)
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and Fa, FFT, and Fdiag(λ) can be computed only once. In addition, the sequence of
vectors {dk = Fdiag(λ)sign(µk)} can be obtained as

dk = dk−1 + Fdiag(λ)∆k (33)

where the vector ∆k = sign(µk)− sign(µk−1) takes values ±2 in the components where the
parameters µk−1 and µk change signs, takes value 0 in the components where they have
the same sign, and would take values ±1 only if some of the components of such parameters
are exactly zero. Therefore, the computation vector dk in (33) can be carried out very
efficiently in practice by adding or subtracting the columns of 2Fdiag(λ) corresponding to
the components where the iterates change sign.

Algorithm 2 shows the efficient implementation of ASM that exploits the specific struc-
ture of the subgradient as described above. The result below describes how such implemen-
tation can result in significant computational savings.

Algorithm 2 – Efficient ASM for MRC learning

Output: approximate solution µ∗

1: Initialize µ1 and take c1 = θ1 = 1, η1 = 0, α = Fa, G = FFT, H = 2Fdiag(λ)

2: y1 ← µ1, v1 ← Fµ1 + b, w1 ← v1, s1 ← sign(µ1), d1 ← (1/2)Hs1

3: i1 ← argmaxv1, µ
∗ ← µ1, f

∗ ← aTµ1 + λT|µ1|+ v
(i1)
1

4: for k = 1, 2, . . . do

5: gk ← a+ λ⊙ sk + colik(F
T)

6: yk+1 ← µk − ckgk, µk+1 ← (1 + ηk)yk+1 − ηkyk

7: uk ← α+ dk + colik(G)

8: wk+1 ← vk − ckuk, vk+1 ← (1 + ηk)wk+1 − ηkwk, ik+1 ← argmaxvk+1

9: sk+1 ← sign(µk+1), ∆k ← sk+1 − sk, dk+1 ← dk

10: for i = 1, 2, . . .m do

11: if ∆
(i)
k = 2 then

12: dk+1 ← dk+1 + coli(H)

13: else if ∆
(i)
k = −2 then

14: dk+1 ← dk+1 − coli(H)

15: else if ∆
(i)
k ∈ {−1, 1} then

16: dk+1 ← dk+1 + (1/2)sign(∆
(i)
k )coli(H)

17: end if

18: end for

19: ck+1 ← (k + 1)−3/2, θk+1 ← 2
k+1 , ηk+1 ← θk+1

(
1
θk
− 1
)

20: fk+1 ← aTµk+1 + λT|µk+1|+ v
(ik+1)
k+1

21: if fk+1 < f∗ then

22: f∗ ← fk+1, µ
∗ ← µk+1

23: end if

24: end for

Theorem 10 The sequences {µk} generated by Algorithms 1 and 2 are identical, while
the computational complexity of Algorithm 2 is significantly smaller at iterations k where
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sign(µk) differs from sign(µk−1) in few components. Specifically, if γK is the sparsity co-
efficient given by the average fraction of non-zero components of ∆k for k = 1, 2, . . . ,K;
then, the computational complexity of Algorithm 2 after K iterations is O(KpmγK), while
that of Algorithm 1 is O(Kpm).

Proof See Appendix I.

The computation in step 6 of Algorithm 1 that has cost O(pm) is effectively replaced by
steps 7-18 in Algorithm 2 that have cost O

(
pmγ(∆k)

)
where γ(∆k) denotes the fraction

of non-zero components of ∆k. As the algorithm progresses and the subgradient steps
decrease to zero, it is expected to have few changes in the signs of µk and therefore to have
a highly sparse vector ∆k. The usage of an ASM also contributes to a reduced number
of sign changes since such method provides more stable iterations than basic subgradient
methods. The method in Nesterov (2014) also exploits the sparsity in subgradient methods
for piecewise linear functions but it considers problems given only by a term max{Fµ+b}
and with a sparse matrix F.

In order to further decrease the number of iterations, we also use restarts similarly to
other methods for non-smooth optimization (Yang and Lin, 2018). Our numerical results
confirm the efficiency of the implementation described in Algorithm 2 which resulted in a
significant reduction (more than 90%) of the running time per iteration in comparison with
Algorithm 1.

6. Numerical results

This section shows four sets of numerical results that describe how the proposed
techniques can enable to learn MRCs efficiently and to obtain reliable and tight per-
formance bounds at learning. We utilize 12 common datasets from the UCI repository
(Dua and Graff, 2017) with characteristics given in Table 1. MRCs’ implementa-
tion is available in the open-source Python library MRCpy (Bondugula et al., 2023)
https://MachineLearningBCAM.github.io/MRCpy/.

In this section, MRCs are implemented using a feature mapping given by random fea-
tures corresponding with a Gaussian kernel (Rahimi and Recht, 2008; Bach, 2017), that
is

Φ(x, y) = ey ⊗Ψ(x) = ey ⊗ [cosuT
1 x, sinu

T
1 x, cosu

T
2 x, sinu

T
2 x, . . . , cosu

T
Dx, sinu

T
Dx] (34)

where x is a normalized instance and u1,u2, . . . ,uD are i.i.d. samples from a zero-mean
Gaussian distribution with covariance (1/σ2)I for a scaling parameter σ. In addition, for n
training samples (x1, y1), (x2, y2), . . . (xn, yn) we obtain confidence vectors as

λ = λ0
√
υ/n (35)

where υ is the vector formed by the sample variances of the feature mapping compo-
nents. In all the numerical experiments, if not stated otherwise, we take λ0 = 0.3 and
use D = 500 random Fourier features corresponding with the scaling parameter σ =

√
d/2

for d the number of instances’ components. We compare MRCs performance and bounds
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Table 1: Characteristics of the datasets used for experimentation.

Data set Number of samples Instances’ dimensionality % Majority class

Adult 48,842 14 76
Pulsar 17,898 8 91
Credit 690 15 56
QSAR 1055 41 66
Mammographic 961 5 54
Haberman 306 3 74
Ion 351 34 64
Heart 270 13 56
Liver 583 10 71
Blood 748 4 76
Diabetes 768 8 65
Audit 776 26 61

with those obtained by Wasserstein-based RRM and by PAC-Bayes methods. Specifically,
we utilize the distributionally robust logistic regression (DRLR) method as described in
Shafieezadeh-Abadeh et al. (2015) with uncertainty sets defined by Wasserstein distances,
and a support vector machine (SVM) with upper bounds given by PAC-Bayes as described
in Langford (2005); Ambroladze et al. (2007).

The first set of numerical results shows that MRCs’ optimization problems can be ef-
ficiently addressed in practice by using a reduced set of instances. Specifically, for s i.i.d.
instances Xs = {x1, x2, . . . , xs}, we solve optimization problems (6) and (20) taking X = Xs

and we study how the error of such approximation decreases with increasing s. For these nu-
merical results we use “Adult” and “Pulsar” datasets from UCI repository (Dua and Graff,
2017) that contain a total of 48,842 and 17,898 instances, respectively. We obtain τ and
λ using 500 training samples. Then, we solve (6) and (20) taking X composed by all the
instances in the dataset and taking X composed by a subset of randomly selected instances
Xs of size s.

In Figure 1, R(hs), Rs(U) and Rs(U) denote, as in Theorem 9, the error probability and
bounds of the MRC obtained solving (6) and (20) taking X = Xs = {x1, x2, . . . , xs}. Solid
curves describe the average results in 50 random repetitions, the shaded areas describe the
intervals formed by the ± standard deviation around the averages, and dashed lines describe
the results obtained taking X composed by all the instances. The figure shows that the
results obtained using a reduced set of instances quickly converge to those obtained using
all the instances. These results agree with the theoretical guarantees for this approximation
shown in Theorem 9 and show that the constants of the bounds in such result can be quite
small in practice. In the remaining numerical results we solve optimization problems (6),
(20), and (21) taking X as the n instances at training.

The second set of numerical results assesses the performance of the efficient SMs pre-
sented in Section 5.2. We solve problem (6) for MRC learning using four methods: the
basic SM (BSM) with step size ck = 1/(

√
k + 1‖gk‖); the efficient BSM that exploits the

subgradient structure as shown in Section 5.2 (E-BSM); the ASM described in Algorithm 1;
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(b) Pulsar dataset

Figure 1: Decrease of optimization error with the number of instances used.

the efficient ASM that exploits the subgradient structure as detailed in Algorithm 2 (E-
ASM); and the efficient ASM described in Algorithm 2 combined with restarts every 10,000
iterations (E-ASM-R).

Figure 2 shows the optimization error per running time averaged over 10 random parti-
tions of four datasets. The results manifest the significant computational savings obtained
by the efficient implementation presented in Section 5.2. Such efficient implementation is
especially advantageous for ASM since it results in a sparsity coefficient around 10−3 while
that achieved in BSM is around 10−1. The restart strategy achieves worse computing time
per iteration since it results in sparsity coefficients around 10−2. However, such strategy
provides an overall improvement in running time since it requires significantly less iterations.

The third set of numerical results shows how the MRCs performance and bounds change
by varying the confidence vectors used. We study the effect of varying the confidence vectors
at learning and the performance guarantees obtained using confidence vectors with high cov-
erage probability. In addition, we compare the results obtained in the practical case where
confidence vectors are obtained from training samples with those obtained in the ideal case
where the error in the mean vector estimates is known. Specifically, for the practical case
we learn MRCs using λ as in (35) and obtain high-confidence performance guarantees using
λδ for δ = 0.05 given by the confidence intervals proposed in Waudby-Smith and Ramdas
(2023). For the ideal case, we learn MRCs using λ = λ0|τ∞−τ |, and obtain high-confidence
performance guarantees using λδ = |τ∞− τ |. In particular, a simple high-confidence upper
bound is obtained using (28), and a tighter high-confidence upper bound is obtained using
Theorem 5 with λ = λδ. In order to reproduce the ideal case, in these numerical results we
use “Adult” and “Pulsar” datasets, the mean τ∞ is calculated using all the samples while
1, 000 samples are randomly sampled for training in 50 repetitions.

Figure 3 shows the error probability R(hU) and upper bound R(U) of MRCs corre-
sponding with different values of λ0, together with the simple high-confidence upper bound
obtained using (28), and the tighter high-confidence upper bound obtained using Theorem 5.
Such figure shows that MRCs do not heavily rely on the choice of the confidence vector. In
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Figure 2: The proposed efficient ASM’s implementation that exploits the subgradients’
structure can significantly reduce the running time required to accurately learn
MRCs.
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Figure 3: Error probabilities and performance bounds of MRCs for different choices of confi-
dence vectors in comparison with the ideal case that use the actual error in mean
vector estimates.
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particular, the error probability obtained using λ as in (35) is similar to the error probability
that would be obtained using the actual difference |τ∞−τ |, and the minimax risk R(U) op-
timized at learning is similar to the error probability for most values of λ0. In addition, the
usage of confidence vectors with high coverage probability can result in performance guar-
antees that are both valid with high probability and informative. Such numerical results
are in agreement with the conclusions drawn from Theorem 7 in Section 4.2. In particular,
Figure 3 shows that the smallest valid upper bound is obtained using λ = |τ∞ − τ | but
more aggressive confidence vectors can result in improved error probability and yet provide
useful performance bounds.

We also compare the performance and bounds of MRCs for varying confidence vectors
with those obtained by DRLRs for varying Wasserstein radius. Figure 4 shows the error
probability and performance bounds of MRCs and DRLRs obtained by varying 0 ≤ λ0 ≤ 1
and the Wasserstein radius 10−5 ≤ ρ ≤ 1, respectively. In particular, for each value of
λ0 and ρ we averaged over 10-fold stratified partitions the error and bounds of MRCs and
DRLRs. Figure 4 shows that MRCs can provide tighter performance bounds than existing
techniques based on RRM with Wasserstein distances. The figure also shows that, even
for datasets of similar size, DRLR methods require to fine-tune the Wasserstein radius ρ in
order to obtain reliable and tight performance bounds while MRCs can utilize a confidence
parameter λ0 that does not strongly depend on the dataset. Figure 4 also shows that
deterministic 0 -1 MRCs, hU

d , can obtain improved classification error in practice at the
expenses of less tight performance guarantees.

The fourth set of numerical results shows how MRCs’ performance bounds can be used
for model selection. We compare the performance obtained by selecting the scaling parame-
ter of a Gaussian kernel using four methods, one based on conventional cross-validation and
three based on error upper bounds. Specifically, SVM-CV selects the scaling parameter for
which a SVM classifier achieves the smallest cross-validation error over 10-fold partitions of
the training data. SVM-PAC, DRLR-UB, and MRC-UB select the scaling parameter with
smallest error upper bound in training. Such upper bounds are obtained for SVM-PAC by
using PAC-Bayes methods as in Langford (2005); Ambroladze et al. (2007), while for DRLR-
UB and MRC-UB the upper bounds are obtained as the value the optimization problem
solved at learning as shown in Shafieezadeh-Abadeh et al. (2015) and in equation (6), re-
spectively. For all datasets, MRCs utilize confidence vectors as in (35) with λ0 = 0.3 and
DRLRs utilize Wasserstein radious of ρ = 0.003 as in Shafieezadeh-Abadeh et al. (2015).

Table 2 shows the classification error obtained by the methods compared in 10 datasets.
Specifically, we generate 20 random stratified splits with 20% test samples. In each split,
we utilize the training samples to learn a classifier selecting a scaling parameter over 20 uni-
formly spaced candidates between the 10th and 90th percentiles of the Euclidean distances
among normalized instances. Then, the error of the corresponding classifier is estimated
using the test samples and the final values in the table are obtained by averaging the results
over the 20 random splits of the data. Table 2 shows that the proposed MRCs as well as
methods based on PAC-Bayes can obtain similar performance to that obtained by conven-
tional methods based on cross-validation. However, MRCs and PAC-Bayes methods require
a significantly smaller complexity since they only need to carry out one optimization per
parameter value while cross-validation methods require to carry out such optimization 10
times per parameter value. In addition, the performance bounds obtained by MRCs can
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Figure 4: MRCs performance bounds for varying confidence vectors in comparison with
those obtained by RRM techniques based on Wasserstein distances.
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Table 2: Classification error of MRC with model selection based on the performance bounds in
comparison with state-of-the-art techniques.

Data set SVM-CV SVM-PAC DRLR-UB MRC-UB Det. MRC-UB

Haberman .26 .27 .32 .25 .25
Heart .17 .17 .23 .21 .18
Liver .28 .28 .33 .29 .28
Blood .22 .23 .25 .24 .22
Credit .14 .13 .20 .15 .14
Diabetes .23 .23 .30 .27 .24
Ion .08 .08 .07 .12 .07
QSAR .11 .12 .14 .18 .12
Mammographic .17 .17 .21 .19 .18
Audit .05 .06 .04 .07 .06
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Figure 5: Boxplots with differences between error probability and bounds for PAC, DRLR,
and MRC methods over multiple datasets and hyperparameter configurations.

be used not only for model selection but also to obtain tight estimates for the classification
error. Figure 5 shows the differences between performance bounds and error probabilities
for all the splits, datasets, and hyper-parameters in this fourth set of numerical results.
The figure shows that the performance bounds provided by MRCs are much tighter than
those based on PAC-Bayes and much more reliable that those based on RRM that use
Wasserstein balls without a fine-tuned radious. In particular, the difference between the
classification error and the performance bounds are around 0.05 for MRCs and around 0.1
for deterministic MRCs.
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7. Conclusion

The paper presents minimax risk classifiers (MRCs) that minimize the worst-case 0 -1 loss
over general classification rules and provide tight performance guarantees. We show how
the out-of-sample performance of MRCs can be reliably estimated at learning, and that
the MRCs’ error due to finite training sizes is determined by the accuracy of expectation
estimates. In addition, we show that MRCs are strongly universally consistent in situations
analogous to those corresponding with kernel-based methods. The proposed methodology
can offer classification techniques that do not rely on specific training samples and choices
for surrogate losses/hypothesis classes. Instead, MRC learning is based on expectation
estimates, and its inductive bias comes only from a feature mapping that determines which
expectations are estimated. Therefore, the methods presented can provide techniques that
are robust to practical situations that defy common assumptions, e.g., training samples that
follow a different distribution or display heavy tails.
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Appendix A.

Lemma 11 Let U be an uncertainty set given by (4). For any h ∈ T (X ,Y), we have that

sup
p∈U

ℓ(h,p) ≤ inf
µ∈Rm

1− τTµ+ sup
x∈X ,y∈Y

{
Φ(x, y)Tµ− h(y|x)

}
+ λT|µ| (36)

In addition, if U that satisfies R1 or R2, we have that

sup
p∈U

ℓ(h,p) = min
µ∈Rm

1− τTµ+ sup
x∈X ,y∈Y

{
Φ(x, y)Tµ− h(y|x)

}
+ λT|µ| (37)

Proof

In the first step of the proof we show that the right hand side of (36) is equivalent to
the Fenchel dual of the left hand side, then the second step of the proof shows that strong
duality holds if U satisfies R1 or R2.

Let 0 ≤ r ≤ m be the number of non-zero components of λ (without loss of generality
we assume such components are the r first components of λ), and M(X × Y) be the set of
signed Borel measures over X × Y with bounded total variation. The set M(X × Y) is a
Banach space with the total variation norm (see e.g., Chapter 10 in Aliprantis and Border
(1994)).

If A is the linear mapping

A : M(X × Y) → R
r+m+1

p 7→ [
∫
Φ1(x, y)dp(x, y),−

∫
Φ1(x, y)dp(x, y),

∫
Φ2(x, y)dp(x, y),

∫
dp(x, y)]

(38)

where Φ1(x, y) ∈ R
r denotes the first r components of Φ(x, y) and Φ2(x, y) ∈ R

m−r denotes
the last m− r components of Φ(x, y). A is bounded and its adjoint operator is

A∗ : R
r+m+1 → F (X × Y) ⊆ (M(X × Y))∗

µ1,µ2,µ3, ν 7→ Φ1(·, ·)
T(µ1 − µ2) + Φ2(·, ·)

Tµ3 + ν.
(39)

where F (X × Y) is the set of bounded Borel measurable functions over X × Y.
Then, we have that

sup
p∈U

ℓ(h,p) = sup
p∈U

1−
∫

h(y|x)dp(x, y) = 1− inf
p∈M(X×Y)

f(p) + g(A(p)) (40)

where f and g are the lower semi-continuous convex functions

g : R
r+m+1 → R ∪ {∞}

(a1,a2,a3, b) 7→
{

0 if a1 � τ 1 + λ1, a2 � −τ 1 + λ1,a3 = τ 2, b = 1
∞ otherwise

(41)
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for τ 1,λ1 ∈ R
r (resp. τ 2,λ2 ∈ R

m−r) given by the first r (resp. last m− r) components of
τ and λ, and

f : M(X × Y) → R ∪ {∞}
p 7→

{ ∫
h(y|x)dp(x, y) if p is nonnegative

∞ otherwise.
(42)

Then, the Fenchel dual (see e.g., Borwein and Zhu (2004)) of (40) is

1− sup
µ1,µ2,µ3,ν

−f∗(A∗(µ1,µ2,µ3, ν))− g∗(−µ1,−µ2,−µ3,−ν) (43)

where f∗ and g∗ are the conjugate functions of f and g. If w ∈ F (X × Y), we have that

f∗(w) = sup
p�0

∫
(w(x, y) − h(y|x))dp(x, y)

=

{
0 if w(x, y) ≤ h(y|x), ∀x, y ∈ X × Y
∞ otherwise

and g∗(−µ1,−µ2,−µ3,−ν) is given by

sup −aT1µ1 − aT2 µ2 − τT
2 µ3 − ν

s.t. a1 � τ 1 + λ1, a2 � −τ 1 + λ1

=

{
−(τ 1 + λ1)

Tµ1 + (τ 1 − λ1)
Tµ2 − τT

2 µ3 − ν if −µ1 � 0,−µ2 � 0

∞ otherwise.

Hence, the dual problem (43) becomes

inf
µ1,µ2,µ3,ν

1− (τ 1 + λ1)
Tµ1 − (−τ 1 + λ1)

Tµ2 − τT
2 µ3 − ν

s.t. Φ1(x, y)
T(µ1 − µ2) + Φ2(x, y)

Tµ3 + ν ≤ h(y|x), ∀(x, y) ∈ X × Y
−µ1 � 0,−µ2 � 0

= inf
µ1,µ2,µ3,ν

1 + (τ 1 + λ1)
Tµ1 + (−τ 1 + λ1)

Tµ2 − τ 2µ3 − ν
s.t. Φ1(x, y)

T(µ2 − µ1) + Φ2(x, y)
Tµ3 + ν ≤ h(y|x), ∀(x, y) ∈ X × Y

µ1 � 0,µ2 � 0

(44)

= inf
µ,ν

1− τTµ+ λT|µ| − ν
s.t. Φ(x, y)Tµ+ ν ≤ h(y|x), ∀(x, y) ∈ X × Y

(45)

= inf
µ

1− τTµ+ sup
(x,y)∈X×Y

{
Φ(x, y)Tµ− h(y|x)

}
+ λT|µ|. (46)

The expression in (45) is obtained taking µ = [(µ2 − µ1)
T,µT

3 ]
T. Firstly, in (44) we can

consider only pairs µ1,µ2 such that µ1 + µ2 = |µ1 − µ2| because for any pair µ1,µ2

feasible in (44), we have that µ̃1 = (µ2 − µ1)+, µ̃2 = (µ1 − µ2)+ is a feasible pair because
µ̃1 − µ̃2 = µ1 − µ2, and we also have that λT

1 |µ̃1 − µ̃2| = λT
1 (µ̃1 + µ̃2) ≤ λT

1 (µ1 + µ2).
Then, we obtain (45) from (44) because

τT
1 (µ2 − µ1) + τT

2 µ3 = τTµ

λT
1 |µ2 − µ1| = λT|µ|, since λ2 = 0

Φ1(x, y)
T(µ2 − µ1) + Φ2(x, y)

Tµ3 = Φ(x, y)Tµ.

32



Minimax Risk Classifiers with 0 -1 Loss

The expression in (46) is obtained since for any feasible (µ, ν) in (45) we have that (µ, ν̃)
is feasible if

ν̃ = inf
(x,y)∈X×Y

{
h(y|x)− Φ(x, y)Tµ

}

and ν̃ ≥ ν. Then, the inequality in (36) follows by weak duality.

For the second step of the proof, if U satisfies R1, we have that strong duality holds
because the dual becomes the Lagrange dual and the constraints in (40) are linear affine
(see e.g., Chapter 5 in Boyd and Vandenberghe (2004)). If U satisfies R2, we show in the
following that strong duality holds because 0 ∈ int(dom g−Adom f) (see e.g., Chapter 4 in
Borwein and Zhu (2004)), where dom denotes the set where an extended-valued function
takes finite values, and int denotes the interior of a set.

If U satisfies R2.1, there exists R > 0 such that R < λ(i) − |EpΦ
(i)(x, y) − τ (i)| for

i = 1, 2, . . . ,m. Then, the second step of the proof is obtained by showing that if 0 < ε <
R/(R + 1 + ‖Ep{Φ}‖2) < 1, we have that the ball with radius ε centered in 0 ∈ R

r+m+1,
B(0, ε) satisfies B(0, ε) ⊂ (dom g −Adom f) ⊂ R

r+m+1.

We have that for any z ∈ B(0, ε) ⊂ R
2m+1, there exist ξ1, ξ2 ∈ B(0, R) ⊂ R

m such that

(
z(1), z(2), . . . , z(m)

)
= Ep{Φ}+ ξ1 − (1− z(2m+1))Ep{Φ}

(
z(m+1), z(m+2), . . . , z(2m)

)
= −Ep{Φ}+ ξ2 + (1− z(2m+1))Ep{Φ}

z(2m+1) = 1− (1− z(2m+1))

because we have that

‖
(
z(1), z(2), . . . , z(m)

)
− z(2m+1)

Ep{Φ}‖2 ≤ ε(1 + ‖Ep{Φ}‖2) < R

‖
(
z(m+1), z(m+2), . . . , z(2m)

)
+ z(2m+1)

Ep{Φ}‖2 ≤ ε(1 + ‖Ep{Φ}‖2) < R.

Then, the result is obtained observing that

(
Ep{Φ}+ ξ1,−Ep{Φ}+ ξ2, 1

)
∈ dom g

because R < λ(i) − |EpΦ
(i)(x, y) − τ (i)| for i = 1, 2, . . . ,m, and

(
(1− z(2m+1))Ep{Φ},−(1 − z(2m+1))Ep{Φ}, (1 − z(2m+1))

)
∈ Adom f

because |z(2m+1)| ≤ ε < 1 and hence (1− z(2m+1))p is a nonnegative measure.

If U satisfies R2.2, we have that Ep{Φ} ∈ int(ConvS), where S denotes the support of
Φ(x, y) if (x, y) ∼ p, and Conv denotes the convex hull of a set. Firstly, int(ConvS) 6= ∅
because S and hence (ConvS) ⊇ S are not contained in a proper affine subspace. In
the case that Ep{Φ} ∈ ConvS \ ConvS, using the Hanh-Banach separation theorem
(see e.g., Theorem 2, Sec 5.12 in Luenberger (1997)), there would exists a hyperplane
Γ = {z;αTz = c} ⊂ R

m such that Ep{Φ} ∈ Γ and αTz ≥ c for all z ∈ ConvS. Then,
the real-valued random variable αTΦ(x, y)− c with (x, y) ∼ p is nonnegative with probabil-
ity one and has expectation zero. Therefore, αTΦ(x, y) = c with probability one, and we
would have that the S is contained in the hyperplane Γ, which leads to a contradiction.

Let R > 0 be such that
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1. R < λ(i) − |EpΦ
(i)(x, y)− τ (i)| for i = 1, 2, . . . , r, and

2. for any ξ in the Euclidean ball of Rm centered at 0 with radiusR, B(0, R), we have that
Ep{Φ}+ξ ∈ ConvS, that is, there exists pξ ∈ ∆(X×Y) such that Epξ{Φ} = Ep{Φ}+ξ.

As in the previous case, the second step of the proof is obtained by showing that if
0 < ε < R/(R + 1 + ‖Ep{Φ}‖2) < 1, we have that B(0, ε) ⊂ (dom g −Adom f) ⊂ R

r+m+1.
If r = 0, we have that for any z ∈ B(0, ε) ⊂ R

m+1, there exist ξ3 ∈ B(0, R) such that

(
z(1), z(2), . . . , z(m)

)
= Ep{Φ} − (1− z(m+1))(Ep{Φ}+ ξ3)

z(m+1) = 1− (1− z(m+1))

because we have that

‖ −
(
z(1), z(2), . . . , z(m)

)
+ z(m+1)

Ep{Φ}‖2
1− zm+1

≤ ε

1− ε (1 + ‖Ep{Φ}‖2) < R.

Then, the result is obtained observing that

(
Ep{Φ}, 1

)
∈ dom g

and (
(1− z(m+1))(Ep{Φ}+ ξ3), (1− z(m+1))

)
∈ Adom f

because |z(m+1)| ≤ ε < 1 and hence (1 − z(m+1))pξ3 is a nonnegative measure, for pξ3
satisfying Epξ3

{Φ} = Ep{Φ}+ ξ3.

If 0 < r < m, we have that for any z ∈ B(0, ε) ⊂ R
r+m+1, there exist

ξ1, ξ2 ∈ B(0, R) ⊂ R
r, and ξ3 ∈ B(0, R) ⊂ Rm−r such that

(
z(1), z(2), . . . , z(r)

)
= Ep{Φ1}+ ξ1 − (1− z(r+m+1))Ep{Φ1}

(
z(r+1), z(2), . . . , z(2r)

)
= −Ep{Φ1}+ ξ2 + (1− z(r+m+1))Ep{Φ1}

(
z(2r+1), z(2r+2), . . . , z(r+m)

)
= Ep{Φ2} − (1− z(r+m+1))(Ep{Φ2}+ ξ3)

z(r+m+1) = 1− (1− z(r+m+1))

because we have that

‖
(
z(1), z(2), . . . , z(m)

)
− z(r+m+1)

Ep{Φ1}‖2 ≤ ε(1 + ‖Ep{Φ}‖2) < R

‖
(
z(r+1), z(r+2), . . . , z(2r)

)
+ z(r+m+1)

Ep{Φ1}‖2 ≤ ε(1 + ‖Ep{Φ}‖2) < R

‖ −
(
z(2r+1), z(2r+2), . . . , z(r+m)

)
+ z(r+m+1)

Ep{Φ2}‖2
1− zr+m+1

≤ ε

1− ε(1 + ‖Ep{Φ}‖2) < R.

Then, the result is obtained observing that

(
Ep{Φ1}+ ξ1,−Ep{Φ1}+ ξ2,Ep{Φ2}, 1

)
∈ dom g

because R < λ(i) − |EpΦ
(i)(x, y) − τ (i)| for i = 1, 2, . . . , r, and

(1− z(r+m+1))
(
Ep{Φ1},−Ep{Φ1},Ep{Φ2}+ ξ3, 1

)
∈ Adom f
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because |z(r+m+1)| ≤ ε < 1 and hence (1 − z(r+m+1))pξ3 is a nonnegative measure, for
pξ3 satisfying Epξ3

{Φ1} = Ep{Φ1} and Epξ3
{Φ2} = Ep{Φ2} + ξ3 that exists because

‖(0T, ξT3 )T‖2 ≤ R.
Finally, since strong duality holds and U is not empty we have that the optimal value

in (37) is finite and hence the optimal in the dual is attained (Borwein and Zhu, 2004) and
the ‘inf’ in (36) becomes ‘min’.

Appendix B. Proof of Theorem 2

Proof Using Lemma 11 we have that

inf
h∈T(X ,Y)

sup
p∈U

ℓ(h,p) = inf
h,µ

1− τTµ+ λT|µ|+ sup
x∈X ,y∈Y

{Φ(x, y)Tµ− h(y|x)}

= min
µ

1− τTµ+ λT|µ|+ inf
h

sup
x∈X ,y∈Y

{Φ(x, y)Tµ− h(y|x)}

and

inf
h

sup
x∈X ,y∈Y

{Φ(x, y)Tµ− h(y|x)} = inf
h,ν

ν

s.t. Φ(x, y)Tµ− h(y|x) ≤ ν, ∀x ∈ X , y ∈ Y.

Then, the result is obtained because

Φ(x, y)Tµ− h(y|x) ≤ ν,∀x ∈ X , y ∈ Y ⇒ h(y|x) ≥ Φ(x, y)Tµ− ν,∀x ∈ X , y ∈ Y
⇒
∑

y∈C

(Φ(x, y)Tµ− ν) ≤ 1, ∀x ∈ X , C ⊆ Y

⇒ ν ≥
∑

y∈C Φ(x, y)
Tµ− 1

|C| , ∀x ∈ X , C ⊆ Y

⇒ ν ≥ ϕ(µ)

with ϕ(µ) given by (7). For each µ, there exist classification rules h satisfying

h(y|x) ≥ Φ(x, y)Tµ− ϕ(µ), ∀x ∈ X , y ∈ Y

by definition of ϕ(µ). Hence, such classification rules are solution of

inf
h

sup
x∈X ,y∈Y

{Φ(x, y)Tµ− h(y|x)}

with optimal value ϕ(µ).
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Appendix C. Proof of Theorem 3

Proof The result can be proven analogously of that in Theorem 2 shown in Appendix B.
Firstly, for each h ∈ T(X ,Y), we have that

supp∈V ℓ(h,p) = 1− min
p

hTp+ I+(p)

s.t.
∑

y∈Y p(xi, y) =
1
n , i = 1, 2, . . . , n

τ − λ � ΦTp � τ + λ

(47)

where p, h, and Φ denote the vectors and matrix with rows p(xi, y), h(y|xi) and Φ(xi, y)
T,

respectively, for y ∈ Y, i = 1, 2, . . . , n, and

I+(p) =

{
0 if p � 0

∞ otherwise.

Optimization problem (47) has Fenchel (Lagrange) dual

1− max
µ1,µ2,ν

(
τ − λ

)T
µ1 −

(
τ + λ

)T
µ2 − 1

n

∑n
i=1 ν

(i) − f∗(Φ(µ1 − µ2)− ν̃)

s.t. µ1,µ2 � 0

where ν̃ is the vector in R
n|Y| with component corresponding with (xi, y) for i = 1, 2, . . . , n,

y ∈ Y given by ν(i), and f∗ is the conjugate function of f(p) = hTp+ I+(p) given by

f∗(w) = sup
p�0

wTp− hTp =

{
0 if w � h

∞ otherwise.

Therefore, the Lagrange dual above becomes

1− max
µ1,µ2,ν

(
τ − λ

)T
µ1 −

(
τ + λ

)T
µ2 − 1

n

∑n
i=1 ν

(i)

s.t. µ1,µ2 � 0

Φ(xi, y)
T(µ1 − µ2)− ν(i) ≤ h(y|xi), ∀y ∈ Y, i = 1, 2, . . . , n.

It is easy to see that the solution of such optimization problem µ̄1, µ̄2 satisfies that

µ̄
(i)
1 µ̄

(i)
2 = 0 for any i such that λi > 0. Then λT(µ̄1 + µ̄2) = λT|µ̄1 − µ̄2| and taking

µ = µ1 − µ2 the Lagrange dual above is equivalent to

1− max
µ,ν

τTµ− λT|µ| − 1
n

∑n
i=1 ν

(i)

Φ(xi, y)
Tµ− ν(i) ≤ h(y|xi), ∀y ∈ Y, i = 1, 2, . . . , n

that has the same value as supp∈V ℓ(h,p) since the constraints in (47) are affine and V is
non-empty.

Therefore,

inf
h∈T(X ,Y)

sup
p∈V

ℓ(h,p) = inf
h,µ,ν

1− τTµ+ λT|µ|+ 1

n

n∑

i=1

ν(i)

Φ(xi, y)
Tµ− ν(i) ≤ h(y|xi), ∀y ∈ Y, i = 1, 2, . . . , n

36



Minimax Risk Classifiers with 0 -1 Loss

and, similarly to the proof for Theorem 2, we have that

Φ(xi, y)
Tµ− ν(i) ≤ h(y|xi), ∀y ∈ Y, i = 1, 2, . . . , n

⇒
∑

y∈C

Φ(xi, y)
Tµ− ν(i) ≤ 1, ∀C ⊆ Y, i = 1, 2, . . . , n

⇒ ν(i) ≥
∑

y∈C Φ(xi, y)
Tµ− 1

|C| , ∀C ⊆ Y, i = 1, 2, . . . , n

⇒ ν(i) ≥ ϕ(µ, xi), ∀i = 1, 2, . . . , n.

Therefore, for each µ, we have that any classification rule satisfying

h(y|x) ≥ Φ(x, y)Tµ−ϕ(µ, x), ∀x ∈ X , y ∈ Y

is solution of

inf
h,ν

1

n

n∑

i=1

ν(i)

Φ(xi, y)
Tµ− ν(i) ≤ h(y|xi), ∀y ∈ Y, i = 1, 2, . . . , n

that has optimal value 1
n

∑n
i=1 ϕ(µ, xi). Then, the result is obtained because for any x ∈ X ,

we have that
∑

y∈Y

(
Φ(x, y)Tµ−ϕ(µ, x)

)
+
= 1

because otherwise there would exist νx < ϕ(µ, x) such that

1 =
∑

y∈Y

(
Φ(x, y)Tµ− νx

)
+
= max

C⊆Y

∑

y∈C

Φ(x, y)Tµ− νx

which contradicts the definition of ϕ(µ, x).

Appendix D. Proof of Theorem 4

Proof The first result is a direct consequence of Hoeffding’s inequality and the union bound
since each component of Φ is bounded by its corresponding scalar feature. Similarly, the
second result is a consequence of the empirical Bernstein inequality in Maurer and Pontil
(2009).
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For the last result, we have that for each j ∈ Y

∣∣∣∣∣
1

n

n∑

i=1

ψ(xi)I{yi = j} − E
{
ψ(x)I{y = j}

}
∣∣∣∣∣

=

∣∣∣∣∣
nj
n

1

nj

n∑

i=1

ψ(xi)I{yi = j} − p∗(y = j)E{ψ(x|y = j)}
∣∣∣∣∣

=

∣∣∣∣∣
nj
n

(
1

nj

n∑

i=1

ψ(xi)I{yi = j} − E{ψ(x|y = j)}
)

+ E{ψ(x|y = j)}
(nj
n
− p∗(y = j)

)∣∣∣∣∣

≤ nj
n

∣∣∣∣∣
1

nj

n∑

i=1

ψ(xi)I{yi = j} − E{ψ(x|y = j)}
∣∣∣∣∣ +C

∣∣∣
nj
n
− p∗(y = j)

∣∣∣

For the first term, we have that with probability at least 1− δ

∣∣∣∣∣
1

nj

n∑

i=1

ψ(xi)I{yi = j} − E{ψ(x|y = j)}
∣∣∣∣∣ ≤ 2Rnj

(F) + 2C
√

log 2/δ√
2nj

using the uniform concentration bound in terms of Rademacher complexities (see e.g.,
Mohri et al. (2018)). For the second term, we have that with probability at least 1− δ

∣∣∣
nj
n
− p∗y(y = j)

∣∣∣ ≤
√

log 2/δ√
2n

using Hoeffding’s inequality. Therefore, the result is obtained using the union bound.

Appendix E. Proof of Theorem 5

Proof The result for R(U ,h) is a direct consequence of Lemma 11, and the second result
for R(U ,h) is obtained analogously since

inf
p∈U

ℓ(h,p) = − sup
p∈U
−1−

∫ (
− h(y|x)

)
dp(x, y)

≥ − inf
µ
−1− τTµ+ λT|µ|+ sup

x∈X ,y∈Y
{Φ(x, y)Tµ+ h(y|x)}

that leads to the expression in (20) changing the notation for the variable in the optimiza-
tion from µ to −µ.
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Appendix F. Proof of Theorem 7

Proof Let U∞ be the uncertainty set in (22). It is clear that p∗ ∈ U∞, then using Theorem 5

R(hU) ≤ R(U∞,hU) = min
µ

1− τT
∞µ+ sup

x∈X ,y∈Y
{Φ(x, y)Tµ− hU(y|x)}

≤ 1− τT
∞µ∗ + sup

x∈X ,y∈Y
{Φ(x, y)Tµ∗ − hU(y|x)}

≤ 1− τT
∞µ∗ + sup

x∈X ,C⊆Y

∑
y∈C Φ(x, y)

Tµ∗ − 1

|C| (48)

= R(U) + (τ − τ∞)Tµ∗ − λT|µ∗|

where (48) is due to the definition of hU .
Analogously,

R(hU) ≥ R(U∞,hU) = max
µ

1− τT
∞µ+ inf

x∈X ,y∈Y
{Φ(x, y)Tµ− hU(y|x)}

≥ 1− τT
∞µ+ inf

x∈X ,y∈Y
{Φ(x, y)Tµ− hU(y|x)}

= R(U) + (τ − τ∞)Tµ+ λT|µ|.

For inequality (25), note that from (48) and using the definition of µ∗ we have that

R(hU) ≤ 1− τTµ∞ + sup
x∈X ,C⊆Y

∑
y∈C Φ(x, y)

Tµ∞ − 1

|C| + λT|µ∞| − λT|µ∗|+ (τ − τ∞)µ∗

= RΦ + (τ∞ − τ )T(µ∞ − µ∗) + λT(|µ∞| − |µ∗|)

Finally, the results in (26) and (27) are obtained analogusly as the previous result using
U instead of U∞.

Appendix G. Proof of Theorem 8

Proof In the first step of the proof we show that if Vn is the uncertainty set

Vn = {p ∈ ∆(X × Y) : τn
∞ − λn � Ep{Φn} � τn

∞ + λn}

with τn
∞ = Ep∗{Φn} and λn satisfying condition (4) in the theorem’s statement, then, we

have that {R(Vn)} tends to RBayes with probability one for any underlying distribution p∗.
In the second step of the proof we obtain the result using Theorem 7 and the Borel-Cantelli
Lemma.

For the first step, we have that R(Vn) for n = 1, 2, . . . is a non-increasing sequence
because for n = 1, 2, . . . the sequence Dn is non-decreasing and any component of λn is non-
increasing. In addition, R(Vn) for n = 1, 2, . . . is lower bounded by RBayes since p∗ ∈ Vn
for any n. Then, the first step in the proof is obtained showing that RBayes is the largest
lower bound and using the monotone convergence theorem. Specifically, in case there exists
L ∈ R such that for all n

R(Vn) ≥ L > RBayes = R({p∗})
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then, it would exist a distribution p′ 6= p∗ with p′ ∈ Vn for all n because Vn1 ⊆ Vn2 if
n1 ≥ n2. Since p′,p∗ ∈ Vn for all n, we have that

−2λn � Ep∗{Φn} − Ep′{Φn} � 2λn (49)

In particular, for all n
‖Ep∗ey − Ep′ey‖∞ ≤ 2‖λn‖∞

so that p∗y = p′y. Using again (49) and the definition of Φn, denoting Ψn(x) =

[ψv1(x), ψv2(x), . . . , ψvDn
(x)]T we get that

1

Dn
‖Ep∗{ey ⊗Ψn} − Ep′{ey ⊗Ψn}‖22 ≤ 4|Y|‖λn‖2∞ →n→∞ 0

because any component of λn tends to 0.
Therefore, for all y ∈ Y we have that

1

Dn

∥∥∥
∫

x∈X
Ψn(x)dp

∗(x, y)−
∫

x∈X
Ψn(x)dp

′(x, y)
∥∥∥
2

2
→n→∞ 0

so that for j ∈ Y such that p∗y(j) 6= 0

1

Dn

∥∥∥
∫

x∈X
Ψn(x)dp

∗
x|y=j −

∫

x∈X
Ψn(x)dp

′
x|y=j

∥∥∥
2

2
→n→∞ 0

⇒
∫

x∈X ,x′∈X

Ψn(x)
TΨn(x

′)

Dn
d(p∗x|y=j − p′x|y=j)d(p

∗
x′|y=j − p′x′|y=j)→n→∞ 0.

Using the law of large numbers we have that with probability one

Ψn(x)
TΨn(x

′)

Dn
→

n→∞
k(x, x′)

⇒
∫

x∈X ,x′∈X
k(x, x′)d(p∗x|y=j − p′x|y=j)d(p

∗
x′|y=j − p′x′|y=j) = 0

⇒
∥∥∥∥
∫
k(x, ·)dp∗x|y=j −

∫
k(x, ·)dp′x|y=j

∥∥∥∥
H

= 0 (50)

for H the RKHS given by kernel k. But equality (50) contradicts p∗ 6= p because k is a
characteristic kernel and p∗y = p′y for all y ∈ Y.

As a consequence of the previous result, we also get that RΦn converges with probability
one to RBayes since the smallest minimax risk satisfies RΦn = R(Un

∞) with

Un
∞ = {p ∈ ∆(X × Y) : Ep{Φn(x, y)} = τn

∞}

that coincides with Vn above taking λn = 0 for all n.
For the second step, if λn and Dn satisfy the two additional conditions in the theorem’s

statement, let N0 be an integer such that any component of λn is larger than

C

√
2 log(|Y|(Dn + 1)) + 2 log 2n2

n
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for any n ≥ N0. Such N0 exists since any component of λn

√
n/ log n tends to ∞ and

Dn = O(nk) for some k > 0. Then, for n ≥ N0 we have that p∗ ∈ Un with probability at
least 1− 1/n2 because using Hoeffding’s inequality we have that

‖τ∞
n − τn‖∞ ≤ C

√
2 log(|Y|(Dn + 1)) + 2 log(2/(1/n2))

n

with probability at least 1 − 1/n2. Therefore, since Vn satisfies R2.1, using Lemma 11 we
have that with probability at least 1− 1/n2

R(hn) ≤ R(Un) ≤ inf
µ

1− τT
nµ+ ϕ(µ) + λT

n |µ|

≤ 1− τT
n µ̄n + ϕ(µ̄n) + λT

n |µ̄n| = R(Vn) + (τn
∞ − τn)

Tµ̄n

where µ̄n is the solution of (6) for τ = τn
∞ and λ = λn.

If λn is the smallest component of λn, we have that ‖µ̄n‖1 ≤ 1/λn because

0 ≤ 1− (τn
∞)Tµ̄n + ϕ(µ̄n) + λT

n |µ̄n| = R(Vn) ≤ 1

and

1− (τn
∞)Tµ̄n + ϕ(µ̄n) ≥ R(Un

∞) ≥ 0.

Therefore, with probability at least 1− 1/n2

R(hn) ≤ R(Vn) + ‖τn
∞ − τn‖∞‖µ̄n‖1 ≤ R(Vn) + C

√
2 log(|Y|(Dn + 1)) + 2 log 2n2√

nλn
.

Let ε > 0 and consider N ≥ N0 such that for any n ≥ N

R(Vn) < RBayes +
ε

2
and C

√
2 log(|Y|(Dn + 1)) + 2 log 2n2√

nλn
<
ε

2
.

Such N exists because

R(Vn)→ RBayes and

√
nλn√
log n

→∞

when n tends to infinity, and Dn = O(nk).
Therefore,

∑

n≥1

P{R(hn)−RBayes ≥ ε} ≤ N − 1 +
∑

n≥N

1

n2
<∞

so that the result follows using the Borel-Cantelli Lemma.
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Appendix H. Proof of Theorem 9

Proof We first show that optimization problems (20) and (21) using Xs instead of X
are equivalent to those using subsets of X that cover most of the probability mass of the
underlying distribution. We then prove that the probabilities of error in such subsets are
near the probabilities of error in all the set X .

Let µu be a solution of the optimization problem

min
µ

1− τTµ+ max
x∈Xs,y∈Y

{
Φ(x, y)Tµ− hs(y|x)

}
+ λT|µ| (51)

and µl be a solution of the optimization problem

max
µ

1− τTµ+ min
x∈Xs,y∈Y

{
Φ(x, y)Tµ− hs(y|x)

}
− λT|µ| (52)

Both µu and µl exist because Xs is finite and Rs(U) is finite.
If Xu and Xl are the sets

Xu =
{
x ∈ X : Φ(x, y)Tµu − hs(y|x) ≤ max

x∈Xs

(
Φ(x, y)Tµu − hs(y|x)

)
,∀ y ∈ Y

}

Xl =
{
x ∈ X : Φ(x, y)Tµl − hs(y|x) ≥ min

x∈Xs

(
Φ(x, y)Tµl − hs(y|x)

)
,∀ y ∈ Y

}

we have that optimization problem (51) is equivalent to that obtained substituting Xs by
Xu because the objective function of the former problem is a lower bound for the latter
and both coincide in µu as a direct consequence of the definition of Xu. Similarly, (52) is
equivalent to that obtained substituting Xs by Xl. We next proof that with probability at
least 1−δ over the randomness of Xs, the sets Xu and Xl have probability larger than 1−εs
with respect to the probability distribution p∗(x).

For each j ∈ Y, let µu,j and µl,j be the vectors of size |Y|(m+1) formed by concatenating

the vectors [µT
u , 1]

T
I{y = j} and [µT

l , 1]
T
I{y = j} for y = 1, 2, . . . , |Y|, respectively. In

addition, for each j ∈ Y, let du,j , dl,j ∈ R be given by

du,j = max
x∈Xs

(
Φ(x, j)Tµu − hs(j|x)

)

dl,j = min
x∈Xs

(
Φ(x, j)Tµl − hs(j|x)

)
.

Then, denoting u(x) = [Φ(x, 1)T,hs(1|x),Φ(x, 2)T,hs(2|x), . . . ,Φ(x, |Y|)Ths(|Y||x), ]T ∈
R
|Y|(m+1) we have that

Xu = {x ∈ X : u(x)Tµu,j ≤ du,j,∀ j ∈ Y}

Xl = {x ∈ X : u(x)Tµl,j ≥ dl,j,∀ j ∈ Y}.
Hence, if A is the set of half spaces in R

|Y|(m+1), and S(A, s) denotes the s-th shat-
ter coefficient of A (see e.g., Theorem 12.5 in Devroye et al. (1996)), we have that with
probability at least 1− δ

E{I{u(x)Tµu,j ≤ du,j}} ≥
1

s

s∑

i=1

I{u(xi)Tµu,j ≤ du,j} −

√
32(log 8S(A, s) + log |Y|

δ )

s
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E{I{u(x)Tµl,j ≥ dl,j}} ≥
1

s

s∑

i=1

I{u(xi)Tµl,j ≥ dl,j} −

√
32(log 8S(A, s) + log |Y|

δ )

s

for all j ∈ Y. Therefore, using the union bound and the fact that S(A, s) ≤ 2(s−1)(m+1)|Y|+
2 ≤ 4s(m+1)|Y| (see e.g., Corollary 13.1 in Devroye et al. (1996)) we get that with probability
at least 1 − δ over the randomness of Xs, the sets Xu and Xl have probability larger than
1− εs.

For the last step of the proof, let R|Z(h) denote the risk of rule h restricted to Z ⊂ X ,
that is,

R|Z(h) =
∫

x∈Z,y∈Y
ℓ(h, (x, y))dp∗|Z(x, y)

for p∗|Z the probability measure corresponding to p∗ restricted to Z, that is

p∗|Z(x, y) =
{

p∗(x,y)
p∗(Z) if x ∈ Z
0 otherwise.

Then, with probability at least 1− δ, we have that

R|Xl
(hs)− εs ≤ R(hs) ≤ R|Xu(hs) + εs (53)

because for any rule h and set Z ⊂ X

R(h) =

∫

x∈X ,y∈Y
ℓ(h, (x, y))dp∗(x, y)

= p∗(Z)
∫

x∈Z,y∈Y
ℓ(h, (x, y))dp∗|Z(x, y) +

∫

x∈X\Z,y∈Y
ℓ(h, (x, y))dp∗(x, y)

= R|Z(h)− (1− p∗(Z))R|Z (h) +
∫

x∈X\Z,y∈Y
ℓ(h, (x, y))dp∗(x, y)

so that

R(h) ≤ R|Z(h) + (1− p∗(Z))(1 −R|Z(h)) ≤ R|Z(h) + (1− p∗(Z))
R(h) ≥ R|Z(h)− (1− p∗(Z))

because 0 ≤ ℓ(h, (x, y)) ≤ 1 for any x and y.
Taking

U1 = {p ∈ ∆(Xu × Y) : |EpΦ− τ | � λ+ 2Cεs1}
U2 = {p ∈ ∆(Xl × Y) : |EpΦ− τ | � λ+ 2Cεs1}

we have that p∗ ∈ U implies that p∗|Xu ∈ U1 and p∗|Xl
∈ U2 with probability at least 1− δ.

Then, using Theorem 5 we have that with probability at least 1− 2δ

R|Xu(hs) ≤ sup
p∈U1

ℓ(hs,p) ≤ inf
µ

1− τTµ+ sup
x∈Xu,y∈Y

{Φ(x, y)Tµ− hs(y|x)}+ λT|µ|+ 2Cεs‖µ‖1

≤ 1− τTµu + sup
x∈Xu,y∈Y

{Φ(x, y)Tµu − hs(y|x)} + λT|µu|+ 2Cεs‖µu‖1

= 1− τTµu + max
x∈Xs,y∈Y

{Φ(x, y)Tµu − hs(y|x)}+ λT|µu|+ 2Cεs‖µu‖1

= Rs(U) + εs2C‖µu‖1 (54)
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using the definition of Xu and Corollary 6. In addition, we have that with probability at
least 1− 2δ

R|Xl
(hs) ≥ inf

p∈U2

ℓ(hs,p) ≥ sup
µ

1− τTµ+ inf
x∈Xl,y∈Y

{Φ(x, y)Tµ− hs(y|x)} − λT|µ| − 2Cεs‖µ‖1

≥ 1− τTµl + inf
x∈Xl,y∈Y

{Φ(x, y)Tµl − hs(y|x)} − λT|µl| − 2Cεs‖µl‖1

= 1− τTµl + min
x∈Xs,y∈Y

{Φ(x, y)Tµl − hs(y|x)} − λT|µl| − 2Cεs‖µl‖1

= Rs(U)− εs2C‖µl‖1 (55)

using the definition of Xl. Therefore, the result is obtained since inequalities (53), (54),
(55) are simultaneously satisfied with probability at least 1− 2δ.

Appendix I. Proof of Theorem 10

Proof Let α, G, and H be given as in Algorithm 2. If g(µ) is the subgradient given by
(32), we have that

F (µ− cg(µ)) + b = F
(
µ− c

(
a+ λ⊙ sign(µ) + coli(µ)(F)

))
+ b

= Fµ+ b− c
(
α+Hsign(µ−) + coli(µ)(G)

)
− cH

(
sign(µ)− sign(µ−)

)

for any µ− ∈ R
m and c ∈ R. Then, using induction it is straightforward to show that in

Algorithm 2 we have that

yk+1 = µk − ckg(µk),

µk+1 = yk+1 + θk(θ
−1
k − 1)(yk+1 − yk)

wk+1 = Fyk+1 + b

vk+1 = Fµk+1 + b

ik+1 = argmaxFµk+1 + b

for all k. Therefore the sequences {µk} generated by Algorithms 1 and 2 are identical.
To prove the second claim, note that the computational complexity of Algorithm 1 in

each iteration is given by the multiplication Fµk+1+b in step 6, which has a time complex-
ity of O(pm). On the other hand, the computational complexity of Algorithm 2 in each
iteration is determined by steps 7-14 which have a time complexity of O(pmγ(∆k)) where
γ(∆k) denotes the fraction of non-zero components of vector ∆k = sign(µk+1)−sign(µk).
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