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Abstract
We give a novel, unified derivation of conditional PAC-Bayesian and mutual information (MI) general-

ization bounds. We derive conditional MI bounds as an instance, with special choice of prior, of conditional
MAC-Bayesian (Mean Approximately Correct) bounds, itself derived from conditional PAC-Bayesian
bounds, where ‘conditional’ means that one can use priors conditioned on a joint training and ghost
sample. This allows us to get nontrivial PAC-Bayes and MI-style bounds for general VC classes, something
recently shown to be impossible with standard PAC-Bayesian/MI bounds. Second, it allows us to get
faster rates of order O((KL/n)γ) for γ > 1/2 if a Bernstein condition holds and for exp-concave losses
(with γ = 1), which is impossible with both standard PAC-Bayes generalization and MI bounds. Our
work extends the recent work by Steinke and Zakynthinou [2020] who handle MI with VC but neither
PAC-Bayes nor fast rates, the recent work of Hellström and Durisi [2020] who extend the latter to the
PAC-Bayes setting via a unifying exponential inequality, and Mhammedi et al. [2019] who initiated fast
rate PAC-Bayes generalization error bounds but handle neither MI nor general VC classes.

1 Extended Introduction
We first give a mini-introduction to PAC-Bayesian and mutual information bounds. Then we indicate two
deficiencies of such bounds and give an informal statement of our main result, which solves both issues for
both types of bounds at the same time. At the end of the introduction we discuss related work. In the
remaining sections 2–4, we provide additional mathematical preliminaries, then we state our main lemma
(proof delegated to an appendix) and use it to prove our main theorem and present its implications.

Setting In the standard setting of supervised learning, we are given a model, i.e., a set F , where each
f ∈ F is a hypothesis that takes the form of a predictor. Our aim is to learn to predict well based on
a sample of n i.i.d. examples Z = (Z1, . . . , Zn) drawn from an unknown distribution D over the space of
examples, Z. We will denote the random variable representing a sample by Z, whereas a single example
will be denoted by a Zi, as previously, or by Z ′. We adopt the convention of using upper-case letters for
random variables (RVs) and lower-case letters for their realizations. A learning algorithm A : Zn → ∆(F)
(where ∆(F) is the set of distributions over F) takes as input the sample Z and outputs a distribution over
hypotheses. The special case of deterministic predictors such as ERM is covered by allowing the algorithm
to output distributions on a single f ∈ F . We refer to the posterior distribution of the output of A given
input Z by A|Z. For a loss function ` : F × Z → R, `(f ; z′) denotes the loss of a deterministic hypothesis
f ∈ F on an example z′ ∈ Z. We extend this notation to define the true loss and the empirical loss of f
on a sample z ∈ Zn by `(f ;D) = EZ′∼D[`(f ;Z ′)] and `(f ; z) = 1

n

∑n
i=1 `(f ; zi), respectively. Furthermore,

for a randomized hypothesis F ∈ ∆(F), we define the expected true loss and the empirical loss on sample
z ∈ Zn by L(F ;D) = Ef∼F [`(f ;D)] and L(F ; z) = Ef∼F [`(f ; z)], respectively. A learning problem is a tuple
(D, `,F).
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Standard PAC-Bayesian bounds Within this setting, a standard goal is to bound the generalization
error of an algorithm A in terms of its empirical/training error. A standard way to achieve this, which has
recently received renewed attention, are PAC-Bayesian generalization error bounds [McAllester, 1998, 2003,
Langford and Shawe-Taylor, 2003, Seeger, 2002, Maurer, 2004, Audibert, 2004, Catoni, 2007, Ambroladze
et al., 2007] which commonly take the form:

generalization error︷ ︸︸ ︷
L(A|Z;D) −

training error︷ ︸︸ ︷
L(A|Z;Z) E C1 ·

√
L(A|Z;Z) · KL(A|Z‖π)

n
+ C2 ·

KL(A|Z‖π)

n
(1)

for some constants C1, C2 > 0 and KL(A|Z‖π) being the KL divergence between the ‘posterior’ output of the
algorithm and the ‘prior’ distribution π over F . The bounds hold for arbitrary priors π, as long as these are
chosen independently of the data Z. Here we are ignoring O(log n) factors. The notation E expresses that
the equation holds up to a small additive term with high probability over the distribution Dn of the training
sample Z as well as in expectation. To be precise, (1) holds as an exponential stochastic inequality or ESI
(pronounced ‘easy’), a useful concept introduced and used by Koolen et al. [2016] and Grünwald and Mehta
[2020], which we will use throughout this paper.

Definition 1 (Exponential Stochastic Inequality (ESI) [Grünwald and Mehta, 2020]). Let η > 0 and X,Y
be random variables that can be expressed as functions of the random variable U defined on the probability
space Dn. Then

X EUη Y ⇔ E
U

[
eη(X−Y )

]
≤ 1.

When no ambiguity can arise, we omit the random variable U . Besides simplifying notation, ESIs are useful
in that they simultaneously capture “with high probability” and “in expectation” results, that is, X EUη Y ,
implies both that ∀δ ∈ (0, 1), X ≤ Y + log(1/δ)/η, with probability at least 1− δ over the randomness of U
and that EU [X] ≤ EU [Y ].

The standard PAC-Bayes bound (1) has recently been applied to practically important continuously
parameterized model classes, such as deep neural networks [Dziugaite and Roy, 2017, Zhou et al., 2019]. The
prior then takes the form of a probability density over the parameters (e.g. weights ~w) and in order for the
KL term to be finite, one needs to randomize the output of the algorithm. Therefore, even if the empirical
error of the output ~w|Z of the original learning algorithm (typically SGD) can be driven down to 0, the
empirical error as appearing in (1), and therefore also the multiplication factor inside the square root, is not
0—one typically takes a Gaussian around ~w|Z leading to a nonnegligible L(A|Z;Z) (Mhammedi et al. [2019]
provide a numerical example).

Standard Mutual Information (MI) Bounds Another, related way to bound generalization error is
provided by mutual information bounds [Russo and Zou, 2016, Xu and Raginsky, 2017]. These usually take
on the following form: ∣∣∣E

Z
[L(A|Z;D)− L(A|Z;Z)]

∣∣∣ ≤√2 · I(A|Z;Z)

n
, (2)

with I(A|Z;Z) denoting the mutual information between the training data and the algorithm’s output.

Two Issues with the Bounds Standard PAC-Bayesian and MI bounds have two deficiencies in common.
First, as recently shown by Livni and Moran [2020], there exist hypothesis classes with finite Vapnik-
Chervonenkis (VC) dimension d for which, rather than achieving the standard VC generalization error bound
of order

√
(d log n)/n, PAC-Bayes bounds of the form (1) must remain trivial: there exists a VC class, such

that for any arbitrary learning algorithm A, there exists a realizable (i.e., inff∈F `(f ;D) = 0) distribution D,
such that for any prior π (even one that is allowed to depend on the data-generating distribution D), either the
KL divergence term KL(A|Z‖π) is arbitrarily large or the loss is large (L(A|Z;D) > 1/4). Similarly, Bassily
et al. [2018] and Nachum et al. [2018] show that there exists a VC class such that, for any proper and
consistent learning algorithm A, there exists a realizable distribution D, such that the mutual information
I(A|Z;Z) in the bound of (2) is arbitrarily large.

Second, in both theoretically interesting settings (such as random label noise, see Example 1 below) and in
practical settings (as already indicated above) the empirical error term L(A|Z;Z) inside the square root of (1)
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often cannot be ignored. Then both bounds (1) and (2) will be of order
√

complexity/n. The theory of
excess risk bounds suggests that this is, in many cases, suboptimal and we can obtain a more desirable bound
of the form complexity/n. Here we concentrate on the following typical form of PAC-Bayesian excess risk
bounds [Audibert, 2004, Zhang, 2006a,b, Grünwald and Mehta, 2020, 2019], but the results are comparable in
nature to excess risk bounds based on e.g. Rademacher complexity bounds [Bartlett and Mendelson, 2006]:

excess risk︷ ︸︸ ︷
R(A|Z;D) E C3 ·

empirical excess risk︷ ︸︸ ︷
R(A|Z;Z) +C4 ·

(
KL(A|Z‖π)

n

)γ
(3)

for some constants C3, C4 > 1 and γ ∈ [1/2, 1]. Here we ignore O(log log n) factors. The excess risk of a
distribution over predictors F ∈ ∆(F) is defined as R(F ;D) = L(F ;D)− L(f∗;D) where f∗ is an optimal
predictor within the class F , achieving minf∈F `(f ;D), whose existence is commonly assumed (e.g. Tsybakov
[2004], Bartlett and Mendelson [2006], Grünwald and Mehta [2020]). The excess risk of algorithm A based
on training sample Z, R(A|Z;D), is thus a nonnegative random variable (depending on Z) denoting the
additional risk incurred if one predicts based on the learned distribution A|Z, compared to the best one could
have with knowledge of the true distribution D. Similarly, the empirical excess risk of F on a sample z ∈ Zn
is R(F ; z) = L(F ; z)− L(f∗; z). Substituting these terms and rearranging, inequality (3) can be written as
follows, giving an upper bound on the generalization gap:

L(A|Z;D)− L(A|Z;Z) E (L(f∗;D)− L(f∗;Z)) + (C3 − 1) ·R(A|Z;Z) + C4 ·
(
KL(A|Z‖π)

n

)γ
(4)

The γ for which (3) holds depends on the interplay between the model F , the loss function `, and the true
distribution D. Specifically, a sufficient condition for the result to hold for γ = 1/(2− β) is if the learning
problem (D, `,F) satisfies a (B, β)-Bernstein condition [Bartlett et al., 2002, Bartlett and Mendelson, 2006,
Van Erven et al., 2015]:

Definition 2 (Bernstein Condition). Let β ∈ [0, 1] and B ≥ 1. Then (D, `,F) satisfies the (B, β)-Bernstein
condition if there exists a f∗ ∈ F such that

E
Z′∼D

[
(`(f ;Z ′)− `(f∗;Z ′))2

]
≤ B

(
E

Z′∼D
[`(f ;Z ′)− `(f∗;Z ′)]

)β
for all f ∈ F . (5)

If the Bernstein condition (5) holds for some f∗, then this f∗ must be an optimal predictor as above. If the
losses are assumed bounded then the Bernstein condition vacuously holds for β = 0 with some B. Throughout
this paper, the losses are assumed in [0, 1], hence it always holds with β = 0, B = 4. Therefore, the slow rate
of γ = 1/(2− 0) = 1/2 can always be obtained. But for loss functions with curvature (specifically, all bounded
so-called mixable loss functions, which includes all exp-concave loss functions [Van Erven et al., 2015]), the
Bernstein condition also holds with β = 1, implying fast O(1/n) rates, i.e., γ = 1. Examples include the
bounded squared error loss and logistic loss. Specifically, for the squared loss `(f ; (X,Y )) := (Y − f(X))2

(rescaled so that all functions map X to [−1/2, 1/2] and Y ∈ [−1/2, 1/2] so that the range is [0, 1]) it
automatically holds with β = 1 and B = 4 [Grünwald and Mehta, 2020, Proposition 19]. Even for the
nonmixable 0/1-loss, a Bernstein condition may still hold. For example, in the realizable case and in the
case of random label noise (homoskedasticity), the Massart condition and, hence, the Bernstein condition
holds, giving γ = 1. The Bernstein condition is a significant weakening of the perhaps more well-known
Tsybakov-Mammen [Tsybakov, 2004] condition which itself is a weakening of the Massart condition for
classification; see Van Erven et al. [2015] for an extensive overview and links between a variety of “easiness”
conditions such as (Massart, Bernstein and Tsybakov) proposed in the literature. Tsybakov [2004] provides
examples of situations in which Bernstein holds for β strictly between 0 and 1, where faster/intermediate
rates can be obtained.

For many algorithms, the empirical excess risk term R(A|Z;Z) will be negligible. For example, for ERM
(Empirical Risk Minimization) it will automatically be nonpositive since by definition the ERM cannot have
larger loss on the sample than f∗. In addition, the first term, that is, the excess risk of f∗, disappears when
the inequality is weakened to an in-expectation bound, while introducing a small unavoidable term in the
in-probability bound. Then, in many settings, the right-hand side of (4) is clearly smaller than that of (1)
which suggests that the standard generalization bound (1) is suboptimal as soon as a Bernstein condition
holds with β > 0. Below we shall see that this is indeed the case.
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Solving Both Issues at Once for both Bounds Partial solutions for both issues were provided by
Audibert [2004], Catoni [2007], Mhammedi et al. [2019], Steinke and Zakynthinou [2020], Hellström and Durisi
[2020]. By combining their insights and adding a new fundamental lemma (Lemma 1 below), we manage
to solve both problems for both types of bounds in essentially a single derivation. Its first intermediate
conclusion is the following faster rate data-conditional generalization error bound (Theorem 1 below): Let
(D, `,F) represent a learning problem which satisfies the (B, β)-Bernstein condition and suppose the loss
function ` is bounded. Let the data Z̃0 = (Z̃1,0, . . . , Z̃n,0)> ∈ Zn be i.i.d. ∼ D. Then for arbitrary almost
exchangeable data-dependent priors π | 〈Z̃0, Z̃1〉 we have:

L(A|Z̃0;D)− L(A|Z̃0; Z̃0) E (1 ∧ 2β) · R(A|Z̃0; Z̃0) + O

 Ẽ
Z1

[
KL
(
A|Z̃0

∥∥∥π|〈Z̃0, Z̃1〉
)]

n


1

2−β

+
6η

n
(6)

Here ∧ denotes minimum, the result holds up to log log n factors and it requires an additional condition which
essentially holds as long as KL(·‖·) = o(n) almost surely under D. Note that this is an ESI inequality and as
such it holds both in expectation and up to a small additive term with high probability over the training
sample Z̃0. We return later to this fact and to the remainder term 6η/n, which for now may be thought of as
negligible.

To appreciate (6), first note that, since the Bernstein condition automatically holds for β = 0, so does (6).
Then the first term on the right disappears and the KL term becomes of order

√
KL/n, as is the leading term

for classical PAC-Bayesian bounds. However, in stark contrast to classical PAC-Bayesian bounds, we are
now allowed (not required) to use priors which can depend on the data in many – but not arbitrary – ways:
just like in classical Vapnik-Chervonenkis learning theory, we imagine a ghost sample Z̃1 of equal size and
distribution as the training sample Z̃0. The notation

〈Z̃0, Z̃1〉 := ({Z̃1,0, Z̃1,1}, {Z̃2,0, Z̃2,1}, . . . , {Z̃n,0, Z̃n,1})>

indicates a vector of n unordered pairs of examples, where the i-th component is the bag of example i in
the training sample Z̃0 and example i in the ghost sample Z̃1. The prior π|〈Z̃0, Z̃1〉 is allowed to depend on
these 2n examples that include all the n training examples, but all information as to whether an example is
in the training or ghost sample is hidden from the prior. The complexity is then measured as the expected KL
divergence where the ghost sample is i.i.d. ∼ D. More formally, let us write Z̃S = (Z̃1,S1

, . . . , Z̃n,Sn)> ∈ Zn×1

for the sample whose i-th example belongs to the sample Z̃0 or Z̃1, as indicated by Si ∈ {0, 1} and let
Z̃S̄ = (Z̃1,S̄1

, . . . , Z̃n,S̄n)> be its complement.

Definition 3 (Almost Exchangeable Prior, terminology from Audibert [2004]). A function (conditional
distribution) π : Zn×2 → ∆(F) is almost exchangeable if for all z̃ ∈ Zn×2, it holds that π|(z̃s, z̃s̄) = π|(z̃0, z̃1),
∀s ∈ {0, 1}n, justifying the notation π|〈z̃s, z̃s̄〉 = π|〈z̃0, z̃1〉.

It may appear that the expectation over the ghost sample makes such KL bounds incalculable in practice,
but this is not so: in Section 3.1 we give examples of data-dependent almost exchangeable priors for which
the KL complexity term, or at least a good upper bound, can be calculated based on the observed data.
In particular, in classification with a class F with finite VC dimension d, when an ERM algorithm with a
specific consistency property is used (Theorem 2 shows that such an ERM can always be constructed), the KL
term can be bounded as d log(2n), leading us to recover classical VC bounds; similarly, for size k-compression
schemes, the KL term is also bounded as k log(2n).

Now suppose a Bernstein condition holds for some β > 0. We then see that (6) gives a faster rate bound
of the same flavour as the classical PAC-Bayesian excess risk bound (4), and with the same exponent γ. In
particular, if ERM is used then the excess risk term will be nonpositive and only the faster-rate term remains.
We also provide a class of exchangeable priors for which a Gibbs posterior can be calculated based on the
observed data, and for the corresponding Gibbs predictor we also get a bound in which the excess risk term
can be omitted (Example 2).

Note that the empirical excess risk term in excess risk bounds does not necessarily vanish if β ↓ 0: the
RHS of our result (6) provides the best of the RHS of (4) and (1). For ERM, if the best β in the Bernstein
condition is known (e.g., for bounded squared or logistic loss), the bound (6) is empirical—it can be calculated
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from the data only. If, as in classification, we do not know the best β in advance, or we do not use ERM so
that the R term is hard to quantify without knowing f∗, the bound as such cannot be calculated based on
the data only; we return to this issue in Section 4.

We may view both the algorithm A and the data-dependent prior π as conditional distributions over
F , given the training sample Z̃0, and the vector of unordered pairs 〈Z̃0, Z̃1〉, respectively. Of course, when
designing the prior π we can also take into account the algorithm A: given 〈Z̃0, Z̃1〉, there are only 2n outputs
possible for any deterministic algorithm A (such as ERM) that outputs a single distribution given training
sample Z̃0. As an additional benefit, we can thus take, without loss of generality, a prior π with discrete
support of at most 2n elements, allowing us to provide bounds for general nonrandomized learning algorithms
– something which, as we have already seen, is not possible in the standard PAC-Bayesian setup when the
parameters of F are continuous-valued.

Solving both Issues for Mutual Information As mentioned above, our bound (6) holds as an exponential
stochastic inequality (Definition 1). Formally, an ESI has the following implications.

Proposition 1 (ESI Implications [Mhammedi et al., 2019, Prop.9]). If X Eη Y , then ∀δ ∈ (0, 1), X ≤
Y +

log 1
δ

η , with probability at least 1− δ. Now let η̄ > 0 and let g : [0, η̄] be continuous and nondecreasing. If
for all η with 0 < η ≤ η̄, X Eη Y + g(η), then E[X] ≤ E[Y ] + g(0).

Our main Theorem 1, rendered as (6) above, holds with E instantiated to Eη with every 0 < η ≤ c
√
n

for some constant c > 0. It can thus be weakened, by applying the proposition above with g(η) = 6η/n,
to an in-probability PAC statement (setting η = c

√
n, it holds with probability at least 1 − δ up to

6c/
√
n+ (− log δ)/(c

√
n) = O(1/

√
n)) but also to an in-expectation statement in which the remainder term

6η/n disappears. We then get a MAC-Bayesian bound, with MAC standing for ‘Mean Approximately Correct’.
By plugging into (6) a special almost exchangeable prior that is both distribution- and data-dependent,
namely the prior that minimizes the bound in expectation for the given learning algorithm, we get the
corresponding faster-rate conditional mutual information bound :

Ẽ
Z0

[
L(A|Z̃0;D)− L(A|Z̃0; Z̃0)

]
≤ (1 ∧ 2β) · Ẽ

Z0

[
R(A|Z̃0; Z̃0)

]
+O

(
CMID(A)

n

) 1
2−β

(7)

The term CMID(A) = infπ E
Z̃0,Z̃1

[
KL
(
A|Z̃0

∥∥∥π|〈Z̃0, Z̃1〉
)]

denotes the conditional mutual information of A

with respect to data distribution D, introduced by Steinke and Zakynthinou [2020] as an information
complexity measure, which is always finite, avoiding the impossibility results of Bassily et al. [2018]. This
conditioning approach has already proven useful in proving sharper generalization bounds [Haghifam et al.,
2020]. However, until the present work, no fast rate results had been proven with respect to CMI.

In contrast to the standard bound (2), there are no absolute signs on the left, but this is not of great
concern since we are almost always interested in a one-sided bound anyway. If β = 0, the right-hand side
of the bound (7) is smaller than that of (2), since CMID(A) ≤ I(A|Z;Z) [Haghifam et al., 2020]. Under a
Bernstein condition or bounded loss with curvature, where β > 0, the rate is clearly faster than the rate
obtained by the standard CMI bound, albeit with an additional excess risk term. For ERM, this first term
disappears, and more generally in most interesting settings, the complexity term is the dominant term.

In Expectation vs. In Probability – A Paradox? At first sight, a fast rate means ‘with high probability,
convergence happens at rate faster than O(1/

√
n)’. But this is impossible even in trivial cases with F = {f}

containing only one element (so every learning algorithm must output f , no matter what data are observed –
there is no learning/overfitting): if `(f, Z1) has variance σ2, then we find by the central limit theorem that
for every fixed α < 1, for all large n,

L(A|Z;D)− L(A|Z;Z) = E
f∼F

[`(f ;D)]− E
f∼F

[`(f ;Z)] ≥ Cα
σ√
n

with probability α over the training sample Z and a constant Cα > 0. Yet, (6) still provides faster rates in
a weaker sense. To see this, note first that, being an ESI, it implies convergence in expectation; and then
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the 1/
√
n term is really not there (and the Central Limit Theorem does not hurt us) – so we do get a faster

rate in expectation. Second, the largest subscript η for which the ESI holds is of order
√
n – implying that

we do incur O(1/
√
n)-fluctuations, and do not contradict the central limit theorem. Yet importantly, the

square-root term has been decoupled from the KL complexity term, which (if β = 1) can converge to 0 as
fast as O(KL/n). In contrast, all other PAC-Bayes bounds we know of, except those of Mhammedi et al.
[2019], have the KL/n term inside the square root. If the KL term grows with n, as it usually does, this may
make the convergence rate of such classical bounds substantially worse than O(1/

√
n). Thus, borrowing

the terminology of Mhammedi et al. [2019], we really have faster rates in probability up to an irreducible,
complexity-free O(1/

√
n) term.1

1.1 Related Work; Other Extensions of the Standard PAC-Bayesian Equation
Although they sometimes look different, most PAC-Bayes bounds can, potentially after slight relaxation,
be brought in the form (1). Examples include the well-known bound with KL on the left due to Langford
and Shawe-Taylor [2003], Seeger [2002], Maurer [2004] and the standard bound due to Catoni [2007]; see
also Tolstikhin and Seldin [2013], who provide an overview and discussion of this type of bound. Based on
an empirical Bernstein analysis, Tolstikhin and Seldin [2013] replaced the empirical error term inside the
square root in (1) by a smaller second order term which, however, still is close to 0 only when the empirical
error itself is close to 0. Based on a variation of the empirical Bernstein idea, a lemma which they called
un-expected Bernstein, Mhammedi et al. [2019] replace the empirical error term inside the square root by a
different second-order term which, they show, goes to 0 with high probability whenever a Bernstein condition
holds. Thus, they are presumably one of the first to have a fast rate PAC-Bayesian generalization error bound
(note again that fast PAC-Bayes excess risk bounds have been known for a long time). Their Theorem 7
provides a first version of the in-probability version of our (6), but with the (1 ∧ 2β) replaced by 1 and the
empirical excess risk R(A|Z̃0; Z̃0) replaced by (essentially) three times the standard risk (i.e., expected loss
difference), making their first term larger than ours and not converge to 0 for algorithms for which the excess
risk does not converge to 0; also their analysis is based on priors that do not allow conditioning on a ghost
sample. However, in contrast to our bound, their bound has the pleasant property of being fully empirical, a
point to which we return in Section 4. Simultaneously, Yang et al. [2019] also gave a fast rate PAC-Bayes
generalization bound using a different technique, which includes a so-called ‘flatness’ term attempting to
capture the flatness of the empirical risk surface on which the posterior Gibbs classifier concentrates. If this
term is small with high probability, then the bound converges fast. In contrast, our bound converges fast
when the strong Bernstein condition (γ = 1) holds and achieves faster rates otherwise. It is easy to show the
‘flatness’ term of [Yang et al., 2019] can be large even if a strong Bernstein condition holds; on the other
hand, there may also be cases in which their bound is tighter than ours — the bounds are so different that
they are hard to compare in general.

The Other Type of Data-Dependent Prior Mhammedi et al. [2019] do make use of data-dependent
priors, an idea pioneered by Ambroladze et al. [2007], which is to set aside part of the training data and
condition everything on it. In the simplest instance, one uses the learning algorithm’s output on the first half
of the data as a prior, then performs a standard PAC-Bayesian bound such as (1) on the second half. In this
way one looses a factor of 2 in the bound but gets a much better informed prior, making the final bound
often substantially better in practice (e.g. in [Dziugaite et al., 2021]). Mhammedi et al. [2019] extend this
idea to using both half samples and mixing the results, analogously to cross-validation. Note though that
this is a very different type of data-dependency than ours: the prior is given the full first half of the sample,
rather than the full training sample plus a ghost sample with ordering information removed.

The Core of Our Contribution MAC-Bayesian bounds, although not under that name, are already to be
found in Catoni’s monograph [Catoni, 2007]. Catoni already mentions that the prior that minimizes a MAC-
Bayesian bound is the prior that turns the KL term into the mutual information. Moreover, Catoni [2007], as

1For ESI-excess risk bounds, because of the substraction of `(f∗;Z) in the bounds, the variance of the excess risk L(A|Z;D)
goes to 0 under a Bernstein condition and fast rates without the O(1/

√
n) term are possible — indeed, if β > 0 then (3) holds

for an η that goes to 0 slower than 1/
√
n (Grünwald and Mehta [2020] provide various examples) and one gets in-probability

excess risk bounds without the irreducible O(1/
√
n) term.
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well as Audibert [2004] in his Ph.D. thesis, introduce the expected KL complexity based on almost exchangeable
priors conditioned on a supersample, but these are not connected to conditional mutual information as in our
paper. Even more closely related, Hellström and Durisi [2020] introduced an exponential inequality which
yields conditional PAC-Bayesian and in-expectation bounds. However, none of the previous works connects
fast rates to the conditional case with almost exchangeable prior. This is the crucial contribution of the
present paper, hinging on our main, and novel, technical Lemma 1, which allows us to get fast rates. Below
the lemma we explain how it goes beyond earlier developments.

2 Preliminaries
Additional Notation For convenience, we include a glossary with all frequently used symbols in Ap-
pendix A. For a random variable X and a distribution P , we write X ∼ P to denote that X is drawn from P
and X ∼ Pn to denote that X consists of n i.i.d. draws from P. The distribution of a random variable X is
denoted by PX and will be omitted when it is clear from context. We denote the Bernoulli distribution over
{0, 1} with mean p by Ber(p). We also write [n] = {1, . . . , n}.

A supersample Z̃ = ((Z̃1,0, Z̃1,1), . . . , (Z̃n,0, Z̃n,1))> ∼ Dn×2 is a vector of n pairs of i.i.d. examples, as
in Table 1. Let S = (S1, . . . , Sn) ∈ {0, 1}n such that S ∼ Ber(1/2)n and let S̄i = 1− Si for all i ∈ [n]. We
write Z̃S = (Z̃1,S1 , . . . , Z̃n,Sn)> ∈ Zn×1 for the sub-vector of Z̃ indexed by S and Z̃S̄ = (Z̃1,S̄1

, . . . , Z̃n,S̄n)>

for its complement. Note that with this notation, we can write Z̃ = (Z̃0, Z̃1), setting S = 0. We also refer to
the vector of unordered pairs 〈Z̃0, Z̃1〉 = ({Z̃1,0, Z̃1,1}, . . . , {Z̃n,0, Z̃n,1})>. With this notation, for any almost
exchangeable prior distribution π : Zn×2 → ∆(F) (Definition 3) it holds that for all z̃ ∈ Zn×2, ∀s ∈ {0, 1}n,
π|z̃ = π|(z̃s, z̃s̄) = π|〈z̃s, z̃s̄〉 = π|〈z̃0, z̃1〉.

Z̃1,0 Z̃1,1

Z̃2,0 Z̃2,1

...
...

Z̃n,0 Z̃n,1

Table 1: Supersample Z̃ ∈ Zn×2

2.1 KL divergence and Mutual Information
First, we define the KL divergence of two distributions.

Definition 4 (KL Divergence). Let P,Q be two distributions over the space Ω and suppose P is absolutely
continuous with respect to Q. The Kullback–Leibler (KL) divergence (or relative entropy) from Q to P is

KL(P‖Q) = E
X∼P

[
log
P(X)

Q(X)

]
,

where P(X) and Q(X) denote the probability mass/density functions of P and Q on X, respectively.2

Next, we define mutual information.

Definition 5 (Mutual Information). Let X,Y be two random variables jointly distributed according to P.
The mutual information of X and Y is

I(X;Y ) = KL
(
P(X,Y )

∥∥PX × PY ) = E
X

[
KL
(
PY |X

∥∥PY )],
where by PX×PY we denote the product of the marginal distributions of P and PY |X=x(y) = P(X,Y )(x, y)/PX(x)
is the conditional density function of Y given X.

2Formally, P(X)
Q(X)

is the Radon-Nikodym derivative of P with respect to Q. If P is not absolutely continuous with respect to

Q (i.e., P(X)
Q(X)

is undefined or infinite), then the KL divergence is defined to be infinite.
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Definition 6 (Conditional Mutual Information). For random variables X,Y, Z, the mutual information of
X and Y conditioned on Z is

I(X;Y | Z) = I(X; (Y, Z))− I(X;Z).

We define here the less common notion of disintegrated mutual information, as in [Negrea et al., 2019,
Haghifam et al., 2020].

Definition 7 (Disintegrated Mutual Information). The disintegrated mutual information between X and Y
given Z is

IZ(X;Y ) = KL
(
P(X,Y )|Z

∥∥PX|Z × PY |Z),
where P(X,Y )|Z denotes the conditional joint distribution of (X,Y ) given Z and PX|Z ,PY |Z denote the
conditional marginal distributions of X, Y given Z, respectively.

The expected value of this quantity over Z is the Conditional Mutual Information between X and Y given
Z that was defined above: I(X;Y |Z) = EZ

[
IZ(X;Y )

]
.

We now define the Conditional Mutual Information of an Algorithm, as introduced in [Steinke and
Zakynthinou, 2020].

Definition 8 (Conditional Mutual Information (CMI) of an Algorithm [Steinke and Zakynthinou, 2020]).
Let A : Zn → ∆(F) be a randomized or deterministic algorithm. Let D be a probability distribution on Z and
let Z̃ ∈ Zn×2 be a supersample consisting of n pairs of examples, each example drawn independently from D.
Let S ∼ Ber(1/2)n, independent from Z̃ and the randomness of A. Let Z̃S = (Z̃1,S1 , . . . , Z̃n,Sn)> ∈ Zn – that
is, Z̃S is the subset of Z̃ indexed by S.

The conditional mutual information (CMI) of A with respect to D is

CMID(A) := I(A|Z̃S ;S | Z̃) = Ẽ
Z

[
IZ̃(A|Z̃S ;S)

]
.

2.2 ESI Calculus
The following proposition is useful for our proofs.

Proposition 2 (ESI Transitivity and Chain Rule [Mhammedi et al., 2019, Prop.10]). (a) Let Z1, . . . , Zn
be any random variables in Z (not necessarily independent). If for some (γi)i∈[n] ∈ (0,+∞)n, Zi Eγi 0
for all i ∈ [n], then

n∑
i=1

Zi Evn 0, where vn =

(
n∑
i=1

1

γi

)−1

.

(b) Suppose now that Z1, . . . , Zn are independent and for some η > 0, for all i ∈ [n], we have Zi Eη 0.
Then

∑n
i=1 Zi Eη 0.

We now state a basic PAC-Bayesian result we use, under the ESI notation:

Proposition 3 (ESI PAC-Bayes [Mhammedi et al., 2019, Prop.11]). Fix η > 0 and let {Yf : f ∈ F} be any
family of random variables such that for all f ∈ F , Yf Eη 0. Let π ∈ ∆(F) be any distribution on F and let
A :
⋃n
i=1Zi → ∆(F) be a possibly randomized learning algorithm. Then

E
f∼A|Z

[Yf ] EZη
KL(A|Z‖π)

η
.

Inside the proof of our main result we work with a random (i.e., data-dependent) η̂ in the ESI inequalities.
We extend Definition 1 to this case by replacing the expectation in the definition of ESI by the expectation
over the joint distribution of (X, Y , η̂): X Eη̂ Y means that E[exp(η̂(X − Y ))] ≤ 0. Via the following
proposition one can tune η after seeing the data.
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Proposition 4 (ESI from fixed to random η [Mhammedi et al., 2019, implied by Prop.12]). Let G be a
countable subset of R+ such that, for some η0 > 0, for all η ∈ G, η ≥ η0. Let π be a probability mass function
over G. Given a countable collection {Yη : η ∈ G} of random variables satisfying Yη Eη 0, for all fixed η ∈ G,
we have, for arbitrary estimator η̂ with support on G,

Yη̂ Eη0
− log π(η̂)

η̂
.

2.3 Bernstein Condition
We consider learning problems (D, `,F) which satisfy the Bernstein Condition (Definition 2 in Section 1).
It will be convenient to work with the following linearized version of the Bernstein condition, proven in
Appendix B. It extends a well-known result that has appeared in previous work, e.g. in [Koolen et al., 2016].

Proposition 5. Suppose that (D, `,F) satisfies the (B, β∗)-Bernstein condition for β∗ ∈ [0, 1]. Pick any
c > 0, η < 1/(2Bc). Then for all 0 < β ≤ β∗ and for all f ∈ F :

c · η E
Z′∼D

[
(`(f ;Z ′)− `(f∗;Z ′))2

]
≤
(

1

2
∧ β
)
·
(

E
Z′∼D

[`(f ;Z ′)− `(f∗;Z ′)]
)

+ (1− β) · (2Bcη)
1

1−β

Note that, by our assumption on η, limβ↑1(2Bcη)1/(1−β) = 0 and the second term vanishes for β = 1.

3 Main Development
Lemma 1 (Main technical lemma). Fix any two real numbers r0, r1 such that |r0|, |r1| ≤ 1. Let S ∼ Ber(1/2)
and let S̄ = 1− S. Then for all 0 < η ≤ 1/4 it holds that

rS̄ − rS Eη η · Cηr2
S̄ ≤ η · C1/4r

2
S̄

where C0 = 2, Cη is a continuous increasing function of η and C1/4 ≈ 3.6064.

The proof of this bound, with an explicit formula for the constant Cη, is in Appendix B. Our formula
for Cη is tight near η = 0 but can be improved if it is known that r0, r1 are of the same sign. For ease of
exposition, below we will only use the value for η = 1/4.

The lemma is the cornerstone in the proof of our main theorem which now follows. In this proof, rS is set
to the excess loss of a hypothesis f on an example from sample Z̃S . Crucially, the square term on the right,
when applied in the proof, only refers to a ghost sample Z̃S̄ while f is a hypothesis trained on the real sample
Z̃0 – this allows us to ‘kill’ it under a Bernstein condition, replacing the square by a small enough linear term.
A qualitatively similar inequality which has the sum r2

S̄
+ r2

S on the right implicitly appears in [Audibert,
2004], but these square terms, being a combination of training and ghost samples, are not easily removed
in our proof, and to get a PAC-Bayesian bound based on this lemma one needs to pick η small enough so
that the term becomes negligible, leading to η � 1/

√
n which implies slow rates. Killing the square terms

by taking a very small η also happens implicitly in the proof of the CMI result of Steinke and Zakynthinou
[2020] as well as Hellström and Durisi [2020] which, for this reason, also give the slow rate.

We note that our Lemma 1 does not hold for unbounded losses and specifically does not hold for sub-
Gaussian losses (to see this, for example, consider the case of r0 = 0 and r1 < (− ln 2)/η). Adjusting this
lemma for sub-Gaussian losses yields terms on the right-hand side that only lead to slow rates – a similar
issue as the one described above occurring in prior work [Steinke and Zakynthinou, 2020, Hellström and
Durisi, 2020, Audibert, 2004]. Thus, while a similar result as ours might hold for sub-Gaussian losses, it
would require fundamentally new ideas to prove it.

Theorem 1. Let (D, `,F) represent a learning problem which satisfies the (B, β∗)-Bernstein condition and
suppose the loss function ` has range in [0, 1]. Let A :

⋃n
i=1Zi → ∆(F) be a possibly randomized learning

algorithm and π ∈ ∆(F) be any almost exchangeable prior. Let Z̃0, Z̃1 be two samples of n i.i.d. examples
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each drawn from D. Then, for all β ∈ [0, β∗], all 0 < η ≤
√
nηmax/24, it holds that,

L(A|Z̃0;D)− L(A|Z̃0; Z̃0) EZ̃0
η

(1 ∧ 2β) ·R(A|Z̃0; Z̃0) + 8 ·

 Ẽ
Z1

[
KL
(
A|Z̃0

∥∥∥π|〈Z̃0, Z̃1〉
)]

+ llog n

nηmax


1

2−β

[∗∗]

+
6η

n
, (8)

where ηmax =
(

1
4 ∧

1
2BC1/4

)
, C1/4 = 3.6064, llog n = log(dlog2(

√
n)e + 2) = O(log log n) and the notation

ab[∗∗] stands for max{ab, a}.

In all interesting cases, the quantity a inside the notation ab[∗∗] in the bound is less than 1, thus ab[∗∗] = ab.
Otherwise, the bound would not be useful, as the LHS is less than 1 for any loss in [0, 1].

Since this is still a Eη-ESI statement with η =
√
nηmax/24, it implies the in-probability statement that

with probability at least 1 − δ, the above holds up to an additional (− log δ)/η term on the right. More
formally, a simple application of Proposition 1 to ESI (8) of Theorem 1 yields Corollary 1:

Corollary 1. Consider the setting and notation of Theorem 1. Let δ ∈ (0, 1). For all β ∈ [0, β∗] and all
almost exchangeable priors π, with probability 1− δ over the choice of Z̃0 ∼ Dn, we have

L(A|Z̃0;D)− L(A|Z̃0; Z̃0) ≤ (1 ∧ 2β) ·R(A|Z̃0; Z̃0)

+ 8 ·

 Ẽ
Z1

[
KL
(
A|Z̃0

∥∥∥π|〈Z̃0, Z̃1〉
)]

+ llog n

nηmax


1

2−β

[∗∗]

+
ηmax

4
√
n

+
24 log(1/δ)√

nηmax
.

The bound (8) also implies the corresponding in-expectation statement with the remainder term 6η/n set
to 0. However, if one directly sets out to prove it, the term llog n and a factor of 2 from the multiplicative
constant in front of the ab[∗∗] term can be avoided. In particular, the following improved bound holds, whose
proof is based on the proof of Theorem 1 and is in Appendix B.

Corollary 2. (‘Variation of Theorem 1’) Consider the setting and notation of Theorem 1. For all β ∈ [0, β∗],
it holds that

Ẽ
Z0

[
L(A|Z̃0;D)− L(A|Z̃0; Z̃0)

]
≤

(1 ∧ 2β) · Ẽ
Z0

[
R(A|Z̃0; Z̃0)

]
+ 4 ·

 E
Z̃0,Z̃1

[
KL
(
A|Z̃0

∥∥∥π|〈Z̃0, Z̃1〉
)]

nηmax


1

2−β

[∗∗]

. (9)

Moreover, for the right choice of prior, the expected KL term is CMID(A), implying the bound:

Corollary 3. Consider the setting and notation of Theorem 1. For all β ∈ [0, β∗], it holds that

Ẽ
Z0

[
L(A|Z̃0;D)− L(A|Z̃0; Z̃0)

]
≤ (1 ∧ 2β) · Ẽ

Z0

[
R(A|Z̃0; Z̃0)

]
+ 4 ·

(
CMID(A)

nηmax

) 1
2−β

[∗∗]
.

Proof of Corollary 3. Let Z̃ = (Z̃0, Z̃1). We focus on the KL divergence in the bound (9):

E
Z̃0,Z̃1

[
KL
(
A|Z̃0

∥∥∥π|〈Z̃0, Z̃1〉
)]

= E
S,Z̃0,Z̃1

[
KL
(
A|Z̃0

∥∥∥π|〈Z̃0, Z̃1〉
)]

= E
S,Z̃

[
KL
(
A|Z̃S

∥∥∥π|〈Z̃S , Z̃S̄〉)]
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The first equality holds since S is independent of Z̃0, Z̃1. The second equality holds because the distributions
of Z̃S , Z̃S̄ , Z̃0, Z̃1 are all identical to Dn and π is almost exchangeable. We choose π = E

S′

[
A|Z̃S′

]
for

S′ ∼ Ber(1/2)n. Notice that π is indeed almost exchangeable. We now have

E
S,Z̃

[
KL
(
A|Z̃S

∥∥∥E
S′

[
A|Z̃S′

])]
= Ẽ

Z

[
E
S

[
KL
(
A|Z̃S

∥∥∥E
S′

[
A|Z̃S′

])]]
= Ẽ

Z

[
IZ̃(A|Z̃S ;S)

]
= CMID(A).

Combining the two equations and substituting the term in inequality (9) completes the proof.

After observing the implications of Theorem 1, we now present its complete proof below.

Proof of Theorem 1. Let z̃ = ((z̃1,0, z̃1,1), . . . , (z̃n,0, z̃n,1))> ∈ Zn×2 be a given, fixed supersample. Let
S = (S1, . . . , Sn), with S1, S2, . . . , Sn i.i.d. Ber(1/2), be a selection vector and let S̄ be its complement, that
is, S̄i := 1− Si for all i ∈ [n]. For each fixed f ∈ F and z̃ ∈ Zn×2, we define

ri(f ; z̃i,0) = `(f ; z̃i,0)− `(f∗; z̃i,0) and ri(f ; z̃i,1) = `(f ; z̃i,1)− `(f∗; z̃i,1).

Since ` has range in [0, 1], it holds that for all i ∈ [n], |ri(f ; z̃i,0)|, |ri(f ; z̃i,1)| ≤ 1. By Lemma 1, for all
i ∈ [n], and η < 1/4, it holds that

ri(f ; z̃i,S̄i)− ri(f ; z̃i,Si) E
Si
η ηC1/4r

2
i (f, z̃i,S̄i) (10)

Now take randomness under the product distribution Ber(1/2)n of S. By independence of the Si and applying
Proposition 2, we can then add the n ESIs (10) to give:

n∑
i=1

ri(f ; z̃i,S̄i)−
n∑
i=1

ri(f ; z̃i,Si) E
S
η ηC1/4

n∑
i=1

r2
i (f, z̃i,S̄i).

Now consider a learning algorithm A that outputs a distribution A|z̃S on F , and any ‘prior’ distribution
π|z̃ on F that is allowed to depend on z̃ (which for now is considered fixed). The PAC-Bayes theorem
(Proposition 3) gives

E
f∼A|z̃S

[
n∑
i=1

ri(f ; z̃i,S̄i)−
n∑
i=1

ri(f ; z̃i,Si)

]
ES|z̃η ηC1/4 E

f∼A|z̃S

[
n∑
i=1

r2
i (f, z̃i,S̄i)

]
+

KL(A|z̃S‖π|z̃)
η

. (11)

We note that S is independent of z̃, so the ESI above could be equivalently written with respect to S
instead of S|z̃.

Since inequality (11) holds for all z̃, we weaken it to an ESI by taking its expectation over Z̃ ∼ Dn×2:

E
f∼A|Z̃S

[
n∑
i=1

ri(f ; Z̃i,S̄i)−
n∑
i=1

ri(f ; Z̃i,Si)

]
ES,Z̃η ηC1/4 E

f∼A|Z̃S

[
n∑
i=1

r2
i (f, Z̃i,S̄i)

]
+

KL
(
A|Z̃S

∥∥∥π|Z̃)
η

Since the conditional distribution π is almost exchangeable with respect to z̃, the above is rewritten as

E
f∼A|Z̃S

[
n∑
i=1

ri(f ; Z̃i,S̄i)−
n∑
i=1

ri(f ; Z̃i,Si)

]
ES,Z̃η ηC1/4 E

f∼A|Z̃S

[
n∑
i=1

r2
i (f, Z̃i,S̄i)

]
+

KL
(
A|Z̃S

∥∥∥π|(Z̃S , Z̃S̄)
)

η
.

Now, since the Z̃1,0, Z̃1,1, . . . , Z̃n,0, Z̃n,1 are i.i.d. and independent of the Si, we must also have:

E
f∼A|Z̃0

[
n∑
i=1

ri(f ; Z̃i,1)−
n∑
i=1

ri(f ; Z̃i,0)

]
EZ̃η ηC1/4 E

f∼A|Z̃0

[
n∑
i=1

r2
i (f, Z̃i,1)

]
+

KL
(
A|Z̃0

∥∥∥π|〈Z̃〉)
η

,
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where we also replaced π|z̃ by its equivalent π|〈z̃〉. Since the Z̃0, Z̃1 consist of i.i.d. random variables, we can
weaken the above inequality to an in-expectation inequality (by Proposition 1) with respect to the ‘ghost”
sample Z̃1 ∼ Dn:

E
f∼A|Z̃0

[
Ẽ
Z1

[
n∑
i=1

ri(f ; Z̃i,1)−
n∑
i=1

ri(f ; Z̃i,0)

]]
EZ̃0
η

ηC1/4 E
f∼A|Z̃0

[
Ẽ
Z1

[
n∑
i=1

r2
i (f, Z̃i,1)

]]
+ Ẽ
Z1

KL
(
A|Z̃0

∥∥∥π|〈Z̃〉)
η

. (12)

We now focus on term of the expected sum of squared excess risks in the RHS. By applying the linearized
(B, β∗)-Bernstein condition of Proposition 5 and adding the inequalities for all i ∈ [n], we have that for all
η < 1/(2BC1/4), β ∈ [0, β∗],

ηC1/4 Ẽ
Z1

[
n∑
i=1

r2
i (f, Z̃i,1)

]
≤
(

1

2
∧ β
)
· Ẽ
Z1

[
n∑
i=1

ri(f ; Z̃i,1)

]
+ n(1− β)(2BC1/4η)1/(1−β). (13)

Now, observe that Ẽ
Z1

[∑n
i=1 ri(f ; Z̃i,1)

]
= n ·R(f ;D) and Ẽ

Z1

[∑n
i=1 ri(f ; Z̃i,0)

]
= n ·R(f ; Z̃0). Combining

inequality (12) with (13) and substituting the terms above, we have that for all η < ηmax :=
(

1
4 ∧

1
2BC1/4

)
,

E
f∼A|Z̃0

[
n ·R(f ;D)− n ·R(f ; Z̃0)

]
EZ̃0
η

(
1

2
∧ β
)
· E
f∼A|Z̃0

[n ·R(f ;D)] + n(1− β)(2BC1/4η)1/(1−β) + Ẽ
Z1

KL
(
A|Z̃0

∥∥∥π|〈Z̃〉)
η

.
Dividing by n and substituting for the expected true and empirical excess risk of the randomized estimator

A|Z̃0, we have the following ESI:

R(A|Z̃0;D) − R(A|Z̃0; Z̃0) EZ̃0
nη

(
1

2
∧ β
)
· R(A|Z̃0;D) +

(
η

ηmax

) 1
1−β

+

Ẽ
Z1

[
KL
(
A|Z̃0

∥∥∥π|〈Z̃〉)]
nη

. (14)

Using Proposition 4, we now extend this ESI to deal with random η. The proposition immediately gives that
for every finite grid G ⊂ [ηmin, ηmax], for arbitrary probability mass function πG on G, for arbitrary functions
(random variables) η̂ : Z̃0 → G, we have:

R(A|Z̃0;D) − R(A|Z̃0; Z̃0) EZ̃0
nηmin

(
1

2
∧ β
)
· R(A|Z̃0;D) +

(
η̂

ηmax

) 1
1−β

+
ub− log πG(η̂)

nη̂
, (15)

where ub can be any upper bound on Ẽ
Z1

[
KL
(
A|Z̃0

∥∥∥π|〈Z̃〉)]. In the remainder of the proof we simply set

ub = EZ̃1

[
KL
(
A|Z̃0

∥∥∥π|〈Z̃〉)], the possibility to take a larger upper bound is explored in Example 2.
Now let πG be the uniform distribution over the grid

G :=

{
ηmax,

1

2
ηmax, . . . ,

1

2K
ηmax : K :=

⌈
log2

(√
n
)⌉

+ 2

}
(16)

and define η̂′, as function of data Z̃0 to be the element of [0, ηmax] minimizing the sum

comp(η) =

(
η

ηmax

) 1
1−β

+

Ẽ
Z1

[
KL
(
A|Z̃0

∥∥∥π|Z̃)]− log πG(η)

nη

12



of the last two terms in (15), and let η̂ be the element within G that minimizes this sum. We can determine
η̂′ by differentiation. We find that, since we have |G| = K + 1 ≥ 3 and hence − log πG(η̂) ≥ 1, it holds

comp(η̂) ≤


2 · comp(η̂′) = 4

 Ẽ
Z1

[KL(A|Z̃0‖π|Z̃)]+llog n

nηmax

1/(2−β)

if η̂′ < ηmax

comp(η̂′) ≤ 2

 Ẽ
Z1

[KL(A|Z̃0‖π|Z̃)]+llog n

nηmax

 if η̂′ = ηmax

where llog n = log(dlog2(
√
n)e+ 2) = O(log log n). Combining this with (15) gives

R(A|Z̃0;D) − R(A|Z̃0; Z̃0) EZ̃0
nηmin

α · R(A|Z̃0;D) + 4 ·

 Ẽ
Z1

[
KL
(
A|Z̃0

∥∥∥π|Z̃)]+ llog n

nηmax


1/(2−β)

[∗∗]

(17)

for every 0 < ηmin ≤ ηmax

8
√
n
, since we have:

η̂ ≥ ηmax

2K
=

ηmax

2dlog2(
√
n)e+2

≥ ηmax

2log2(
√
n)+3

=
ηmax

8
√
n
.

Here the notation ab[∗∗] indicates max{ab, a} and here and below we set α =
(

1
2 ∧ β

)
.

From inequality (17), we can derive the following two ESIs. First, by substituting R(A|Z̃0;D) and
R(A|Z̃0; Z̃0) and η := nηmin and rearranging, we have for every η ≤

√
nηmax/8 that

L(A|Z̃0;D)− L(A|Z̃0; Z̃0) EZ̃0
η

α ·R(A|Z̃0;D) + 4 ·

 Ẽ
Z1

[
KL
(
A|Z̃0

∥∥∥π|Z̃)]+ llog n

nηmax


1/(2−β)

[∗∗]

+ L(f∗;D)− L(f∗; Z̃0) (18)

Second, by rearranging and multiplying by α/(1− α), (17) also gives

αR(A|Z̃0;D) EZ̃0

η(1−α)/α 2α ·

R(A|Z̃0; Z̃0) + 4 ·

 Ẽ
Z1

[
KL
(
A|Z̃0

∥∥∥π|Z̃)]+ llog n

nηmax


1/(2−β)

[∗∗]

, (19)

where we used that α ≤ 1/2 hence α/(1− α) ≤ 1 and the fact that, straightforwardly, U Eη 0⇒ cU Eη/c 0.
We want to combine these two ESIs, while also replacing the final term L(f∗;D)− L(f∗; Z̃0) in (18). For
this we note that Hoeffding’s Lemma in ESI notation combined with the ESI chain rule (Proposition 2)
for i.i.d. random variables immediately gives n(L(f∗;D) − L(f∗; Z̃0)) Eη′ 2nη′ for all η′ > 0, hence also
L(f∗;D)− L(f∗; Z̃0) Enη′ 2η′ and hence substituting η := η′n,

L(f∗;D)− L(f∗; Z̃0) Eη
2η

n
. (20)

Chaining ESIs (18), (19) and (20), using Proposition 2(a), now gives, for all η ≤
√
nηmax/8,

L(A|Z̃0;D)− L(A|Z̃0; Z̃0) EZ̃0

η(1−α)/(2−α)

(1 ∧ 2β) ·R(A|Z̃0; Z̃0) + 8 ·

 Ẽ
Z1

[
KL
(
A|Z̃0

∥∥∥π|Z̃)]+ llog n

nηmax


1/(2−β)

[∗∗]

+
2η

n
. (21)

Since, by 0 ≤ α ≤ 1/2, (1− α)/(2− α) ≥ 1/3, the result follows substituting η in place of η/3.
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3.1 Applications
In this section, we demonstrate some applications of Theorem 1, providing classes F for which standard
PAC-Bayesian bounds are suboptimal or difficult to obtain, but the almost exchangeable priors conditioned
on supersamples make them straightforward. We note that the settings are slight extensions of examples
already covered by Audibert [2004] and Steinke and Zakynthinou [2020] in the non-fast rate setting; the
added benefit is the fast-rate treatment allowed by Theorem 1 and its extension for Gibbs posteriors in
Example 2. For starters, the following observation (proof omitted) allows us to mix almost exchangeable
priors and to construct them from standard priors:

Proposition 6. Let W be any standard distribution on F independent of the data, i.e. W |〈z̃〉 = W |〈z̃′〉
for all z̃, z̃′ ∈ Z2n. Then W is also an almost exchangeable prior. Further, let {Wk : k ∈ N} denote a
countable set of almost exchangeable priors and let ρ be a probability mass function on N. Then W defined by
W | 〈z̃〉 =

∑
k∈N ρ(k) ·Wk | 〈z̃〉 is an almost exchangeable prior as well.

3.1.1 VC classes

In this section, Z = X × {0, 1} and F = {f : X → {0, 1}} is a hypothesis class with VC dimension d. We
work with the 0-1 loss ` : F × (X × {0, 1})→ {0, 1} defined by `(f, (x, y)) = 0⇔ f(x) = y.

Theorem 2. Let F = {f : X → {0, 1}} be a hypothesis class with VC dimension d and let Z = X × {0, 1}.
There exists a deterministic Empirical Risk Minimization algorithm A : Z∗ → F for 0/1 loss and an almost
exchangeable prior π, such that, for any z̃0, z̃1 ∈ Zn,

KL(A|z̃0‖π|〈z̃0, z̃1〉) ≤ d log(2n).

The theorem can be proven by following the same steps as the proof of Steinke and Zakynthinou [2020,
Theorem 4.12]; we provide its proof in Appendix B.

Example 1 (Thresholds). Consider the set of threshold functions T = {ft : N→ {0, 1} : t ∈ N∪{∞}}, where
ft(x) = 1⇔ x ≥ t. Let ` be the 0/1 loss satisfying `(f, (x, y)) = 0⇔ f(x) = y. Let A : (N× {0, 1})n → T be
a learning algorithm that outputs the smallest optimal threshold – i.e., A|z = fmin{x:fx∈arg minf∈T `(f,z)}∪{∞}.
It is straightforward to see that A is an ERM that satisfies the global consistency property from the proof
of Theorem 2. Since T has VC dimension d = 1, there exists an almost exchangable prior π such that
KL(A|z̃0‖π|〈z̃0, z̃1〉) ≤ log(2n) for all z̃. Now suppose that we have a distribution D with random label
noise – i.e., there is some t∗ such that each data point Xi is sampled from an arbitrary DX and, given Xi,
Yi = ft∗(Xi) with probability 1−p and Yi = 1−ft∗(Xi) with probability p for some 0 < p < 1/2. This implies
the Massart condition and hence the Bernstein condition with β = 1 and B depending on p [Van Erven et al.,
2015]. Still, the empirical error of ERM does not go to 0 with n due to the label noise. Therefore, standard
PAC-Bayes bounds (1) are of order

√
KL/n, whereas Theorem 1 gives a fast rate of order (log n)/n.

3.1.2 Compression Scheme Priors

The following extends the notion of a compression scheme due to Littlestone and Warmuth [1986].

Definition 9 (Compression Scheme Prior). We call a data-dependent distribution W : Zn → ∆(F) a
compression scheme prior of size k if we can write W |z = W2|(A1|z) for all z, where

1. A1 : Zn → Zk is a “compression algorithm” which given a sample z ∈ Zn selects a subset i1, . . . , ik ∈ [n]
and returns (zi1 , . . . , zik) ∈ Zk and

2. W2 : Zk → ∆(F) is any function.

For k = 0, we say that W is a compression scheme prior of size 0 iff it outputs a fixed distribution.

Theorem 3. Let W : Zn → ∆(F) be a compression scheme prior of size k ≥ 0 and A : Zn → ∆(F) be an
arbitrary possibly randomized learning algorithm. Then there exists an almost exchangeable prior π, such that
for all z̃0, z̃1 ∈ Zn,

KL(A|z̃0‖π|〈z̃0, z̃1〉) ≤ KL(A|z̃0‖W |z̃0) + k log(2n). (22)
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Proof of Theorem 3. Let W = W2|(A1|z) be a compression scheme prior and let 〈z̃〉 = 〈z̃0, z̃1〉. We choose
the conditional prior distribution as

π(f |〈z̃〉) =

∑
zk∈K(z̃) PW2|zk(f)(

2n
k

) ,

where we denote by K(z) the set of all subsets of z of size k. Observe that π is indeed an almost exchangeable
prior. It holds that

KL(A|z̃0‖π|〈z̃0, z̃1〉) = E
f∼A|z̃0

[
log
PA|z̃0(f)

π(f |〈z̃〉)

]
= E
f∼A|z̃0

[
log

PA|z̃0(f) ·
(

2n
k

)∑
zk∈K(z̃) PW2|zk(f)

]

≤ E
f∼A|z̃0

[
log
PA|z̃0(f) ·

(
2n
k

)
PW2|(A1|z̃0)(f)

]

= E
f∼A|z̃0

[
log
PA|z̃0(f)

PW |z̃0(f)

]
+ log

(
2n

k

)
≤ KL(A|z̃0‖W |z̃0) + k log(2n),

where the first inequality holds since A1|z̃0 ∈ K(z̃) which implies that
∑
zk∈K(z̃) PW2|zk(f) ≥ PW2|(A1|z̃0)(f).

The last inequality follows by the common bound
(

2n
k

)
≤ (2n)k.

In the case that we choose a size k compression scheme prior W that, upon each input, puts all its mass
on a single f̂ | Z̃0 ∈ F , and we choose A to be the deterministic learning algorithm that is equal to W , then
A has a compression scheme of size k in the original sense of Littlestone and Warmuth [1986] and its KL
complexity will by Theorem 3 be bounded by k log(2n). Our generalization allows us to choose an algorithm
A different from W that might, for example, base its output on the whole dataset and not just the k points
selected by A1 ‘inside’ W . An example algorithm with pleasant properties is the Gibbs algorithm with W as
a prior.

Example 2. (Gibbs Algorithm based on Compression Scheme Prior) The Gibbs or generalized Bayes
learning algorithm (see, e.g., Alquier [2020], Grünwald and Mehta [2020], Zhang [2006b]) AGibbs : Zn → ∆(F)
with (possibly data-dependent) learning rate η̂ based on data-dependent prior distribution W is defined in
terms of its posterior density (Radon-Nikodym derivative) relative to W , as

d(AGibbs|Z̃0)

d(W |Z̃0)
(f) ∝ exp(−η̂nR(f ; Z̃0)).

This is the standard definition of the Gibbs algorithm relative to prior distribution W | Z̃0. A modification
of the proof of Theorem 1, sketched in Appendix B, gives the following corollary: if we set A to the Gibbs
algorithm relative to size k compression scheme prior W , and A′ to any other algorithm, we have, with the
same abbreviations as in Theorem 1,

L(AGibbs|Z̃0;D) EZ̃0
η

L(A′|Z̃0; Z̃0) + (1 ∧ 2β) ·R(A′|Z̃0; Z̃0) + 8 ·

KL
(
A′|Z̃0

∥∥∥W |Z̃0

)
+O(k log n)

nηmax

1/(2−β)

[∗∗]

+
6η

n
.

In particular, if A′ is set to an ERM, the sum of the first two terms on the right is upper bounded by
L(AGibbs|Z̃0; Z̃0) again and, under a Bernstein condition, we get a fast rate for the Gibbs algorithm as well,
although the complexity term is taken relative to ERM rather than Gibbs.
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4 Conclusion and Future Work
We have shown how to extend PAC-Bayesian and Mutual Information Bounds to a fast-rate conditional
version which allows us to handle arbitrary VC classes. One point which remains open for future research is
the fact that, unless we use ERM and we deal with losses like the squared error for which we know the β
for which the Bernstein condition holds in advance, the bound (6) is not empirical (observable from data
only, without knowing D or f∗). Mhammedi et al. [2019] do provide an empirically observable bound that
achieves fast rates, by replacing f∗ by an estimator based on part of the training data only (a technique
called de-biasing by Y. Seldin) and by replacing the O((KL/n)1/(2−β)) term by an empirical variance-like
term that goes to 0 at the right rate if a Bernstein condition holds but can be calculated without knowing β.
It seems likely that our bound can also be made fully empirical, for arbitrary learning algorithms and losses
rather than just ERM and curved losses. Whether this is really the case will be sorted out in future work.
Another interesting open question is whether a similar bound holds for unbounded but sub-Gaussian losses;
see the discussion underneath Lemma 1.
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A Glossary

Notation Description
D Probability distribution over Z
Z i.i.d. sample of size n: Z = (Z1, . . . , Zn) ∼ Dn

(D, `,F) Learning problem for distribution D, loss function `, and set of hypotheses F
`(f ; z) Empirical loss of f on sample z ∈ Zn: `(f ; z) = 1

n

∑n
i=1 `(f ; zi)

`(f ;D) True loss of f : EZ′∼D[`(f ;Z ′)]

f∗ True loss minimizer within F : `(f∗;D) = inff∈F `(f ;D)

A (Possibly randomized) learning algorithm: A :
⋃n
i=1Zi → ∆(F)

A|Z Posterior distribution of output of A on input Z ∼ Dn

L(F ; z) Empirical loss of F ∈ ∆(F) on sample z ∈ Zn: L(F ; z) = Ef∼F [`(f ; z)]

L(F ;D) True loss of F ∈ ∆(F): L(F ;D) = Ef∼F [`(f ;D)]

R(F ; z) Empirical excess risk of F ∈ ∆(F) on sample z ∈ Zn: R(F ; z) = Ef∼A[r(f ; z)]

R(F ;D) True excess risk of F ∈ ∆(F): R(F ;D) = E
f∼A

[r(f ;D)]

Z̃ Supersample Z̃ =
(

(Z̃1,0, Z̃1,1), . . . , (Z̃n,0, Z̃n,1)
)>
∼ Dn×2

S Random selector vector S ∼ Ber(1/2)n

Z̃S Subset of Z̃ indexed by S ∈ {0, 1}n: Z̃S = (Z1,S1 , . . . , Zn,Sn)> ∈ Zn

〈Z̃〉 List of unordered pairs of Z̃: 〈Z̃〉 = 〈Z̃0, Z̃1〉 = ({Z̃1,0, Z̃1,1}, . . . , {Z̃n,0, Z̃n,1})>

Table 2: Notation

B Omitted proofs

B.1 Linearized version of Bernstein Condition
It will be convenient to work with the following linearized version of the Bernstein condition. It is an extension
of a well-known result that has appeared in previous work, e.g. in [Koolen et al., 2016]. We restate it here for
convenience.

Proposition 7 (Restatement of Proposition 5). Suppose that (D, `,F) satisfies the (B, β∗)-Bernstein condi-
tion for β∗ ∈ [0, 1]. Pick any c > 0, η < 1/(2Bc). Then for all 0 < β ≤ β∗ and for all f ∈ F :

c · η E
Z′∼D

[
(`(f ;Z ′)− `(f∗;Z ′))2

]
≤
(

1

2
∧ β
)
·
(

E
Z′∼D

[`(f ;Z ′)− `(f∗;Z ′)]
)

+ (1− β) · (2Bcη)
1

1−β

Proof of Proposition 5. We first prove the proposition for 0 < β < 1. For any η > 0, B′ > 0, let g(x) =
B′ηxβ − x, for x > 0. We have

max
x>0
{g(x)} = max

x>0
{B′ηxβ − x} = (1− β)ββ/(1−β) · (B′η)

1/(1−β)
,

since g′(x) = 0 for x = (B′ηβ)1/(1−β) and g′′(x) < 0 for all x > 0. Hence, for all 0 < a ≤ 1 and c > 0, by
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setting B′ = Bc/a, we have:

max
x>0
{Bcηxβ − ax} = max

x>0
{a · g(x)}

= a · (1− β) · ββ/(1−β) ·
(
Bc

a
ηβ

)1/(1−β)

= a−β/(1−β) · (1− β) · ββ/(1−β) · (Bcη)
1/(1−β) (23)

Now, by assumption, the (B, β∗)-Bernstein condition holds for β∗ ≥ β. Since the excess risk R(f ;D) =
E

Z′∼D
[`(f ;Z ′)− `(f∗;Z ′)] ∈ [0, 1], the (B, β)-Bernstein condition also holds, which implies that

cη E
Z′∼D

[
(`(f ;Z ′)− `(f∗;Z ′))2

]
≤ Bcη

(
E

Z′∼D
[`(f ;Z ′)− `(f∗;Z ′)]

)β
.

We now apply (23) with x = E
Z′∼D

[`(f ;Z ′)− `(f∗;Z ′)] and a =
(

1
2 ∧ β

)
in the above inequality, establishing

that

cη E
Z′∼D

[
(`(f ;Z ′)− `(f∗;Z ′))2

]
≤ a E

Z′∼D
[`(f ;Z ′)− `(f∗;Z ′)] + a−

β
1−β · (1− β) · β

β
1−β · (Bcη)

1
1−β .

Bounding the last term of the RHS by (1− β) · (2Bcη)1/(1−β) would complete the proof for 0 < β < 1. For
this to hold, it suffices to prove that (β/a)

β/(1−β) ≤ 21/(1−β), for 0 < β < 1. If a = β, then the inequality
reduces to 1 ≤ 2, which trivially holds. If a = 1/2, then the inequality reduces to (2β)β ≤ 2, which also holds.

It remains to prove the proposition for the limiting cases of β = 0 and β = 1. For β = 0, the
RHS reduces to (2Bcη), and the inequality trivially holds by the assumption of the (B, β∗)-Bernstein
condition and the trivial bound of (EZ′∼D[`(f ;Z ′)− `(f∗;Z ′)])β

∗
≤ 1. For β = β∗ = 1, the RHS reduces

to 1
2EZ′∼D[`(f ;Z ′)− `(f∗;Z ′)], and the inequality also holds by the assumption of the (B, 1)-Bernstein

condition and our setting of η < 1/(2Bc).

B.2 Proof of main technical Lemma 1
For convenience we first restate the lemma:

Lemma 2 (Restatement of main technical Lemma 1). Fix any two real numbers r0, r1 such that |r0|, |r1| ≤ 1.
Let S ∼ Ber(1/2) and let S̄ = 1− S. Then for all 0 < η < 1/(1 +

√
2), it holds that

rS̄ − rS Eη η · C2,ηr
2
S̄

with CA,η an increasing function of η given by

CA,η =
1

1− η
·
(
A+
√
A · η

1− η
· c√Aη/(1−η)

)
,

where cγ = 2 (− log (1−γ)−γ)
γ2 . If both r0 and r1 have the same sign, the constant can be improved to C1,η and

the result holds for all 0 < η < 1/2. Since cγ is increasing and limγ↓0 cγ = 1 the ‘leading constant’ is given by
limη↓0 C2,η = 2 (and limη↓0 C1,η = 1 in case both r0 and r1 have the same sign).

For simplicity in the derivations, in the main text we will consider only η ≤ 1/4 and use C1/4 = 3.6064 as
an upper bound on C2,η. It is easy to see that the result is tight in the limit for η ↓ 0, by considering the case
r0 = −r1 and doing a second order Taylor approximation of ES [exp(η(rS̄ − rS))] around η = 0. The result
is only proven for r0, r1 with |r0|, |r1| ≤ 1, and (since cγ tends to ∞ as γ ↑ 1), the bound becomes void for
η ≥ 1/(1 +

√
2). Yet, as is straightforward to show by inspecting the formulas, for general r0 ≤ r1 <∞ we

still have rS̄ − rS Eη ηBr2
S̄
for some finite B as long as r0 > − log 2, with B tending to infinity as r0 ↓ − log 2;

it is just not so easy any more to give a crisp bound.

The proof crucially makes use of the following un-expected Bernstein inequality (originally due to Fan
et al. [2015], our presentation follows Mhammedi et al. [2019] who gave it its name):

20



Lemma 3 (Un-expected Bernstein Inequality [Mhammedi et al., 2019, Lemma 13(a)]). Let U be a random
variable bounded from above by b > 0 almost surely, and let θ(u) = (− log(1−u)−u)/u2. For all 0 < η < 1/b,
we have

E[U ]− U Eη
1

2
ηcη · U2 for all cη ≥ 2 · θ(ηb).

Proof of Lemma 1. We only prove the case for general r0, r1 with |r0|, |r1| ≤ 1. The improved bound for r0

and r1 of the same sign can be proven by following exactly the same steps as below, where the term (r0− r1)2

in the derivation of (26) is bounded by r2
1 + r2

2 instead of 2r2
1 + 2r2

0.
Fix λ > 0 and let x ∈ R. The well-known cosh-inequality states that (1/2) exp(λx) + (1/2) exp(−λx) ≤

exp(λ2x2/2). Now fix x and let Y be a Rademacher RV such that P (Y = x) = P (Y = −x) = 1/2. By
definition, for all λ > 0, E

Y
[exp(λY )] = (1/2) exp(λx) + (1/2) exp(−λx). Therefore, by the cosh-inequality, we

have for all η > 0, A > 0, and letting λ = Aη, that

Y EAη
1

2
Aηx2. (24)

Now, let U be a RV such that U ∈ [0, 1]. Then by the un-expected Bernstein inequality of Mhammedi et al.
[2019] (Lemma 3) we have, for all 0 < η < 1,

E
U

[U ] Eη U +
1

2
ηcηU

2,

for cη = 2 (− ln (1−η)−η)
η2 . Since U ≥ 0, it follows that for all 0 < η < 1,

E
U

[U ] Eη (1 + ηcη/2)U.

Hence

2AηE
U

[U ] E1/2A Aη(2 + ηcη)U. (25)

Note that with x = r1−r0, rS̄−rS is a Rademacher RV such that P (rS̄−rS = x) = P (rS̄−rS = −x) = 1
2 .

Thus, by (24), we have that for all η > 0, A > 0,

rS̄ − rS EAη
1

2
Aη · (r0 − r1)2

≤ Aη · 1

2
(2r2

1 + 2r2
0) (since (x− y)2 ≤ 2x2 + 2y2)

= 2Aη ·
(
E
S′

[
r2
S̄′

])
. (26)

Since r2
S̄
∈ [0, 1], we also apply (25) to r2

S̄
. We then have that, for η < 1,

2Aη ·
(
E
S′

[
r2
S̄′

])
ES
′

Aη Aη(2 + ηcη)r2
S̄ .

Now for arbitrary (possibly dependent) RVs X,Y, Z we have X EAη Y, Y E1/2A Z ⇒ X Eη̄ Z, where
η̄ = (1/(Aη) + 2A)−1 = Aη/(1 + 2A2η) (by Proposition 2). Combining the above two ESIs implies that

rS̄ − rS Eη̄ Aη(2 + ηcη)r2
S̄ .

This bound holds for all 0 < η < 1 and arbitrary A > 0. We want this bound to hold for as large η̄ as
possible. Since η = η̄/(A(1− 2Aη̄)) is an increasing function of η̄, the bound is valid up to all η̄ < η̄∗ where
1 = η̄∗/(A(1− 2Aη̄∗)). Choosing the A for which η̄∗ is maximal gives A = 1/

√
2, and then η̄∗ = 1/(1 +

√
2)

and η =
√

2η̄/(1− η̄). Substituting η and A in the previous ESI we now get, for 0 < η̄ < 1/(1 +
√

2),

rS̄ − rS Eη̄
η̄

1− η̄
·
(

2 +
√

2
η̄

1− η̄
· c√2η̄/(1−η̄)

)
· r2
S̄ = η̄ · C√2,η̄ · r

2
S̄

and the result follows.
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B.3 Improved in-expectation bound - ‘Variation’ of Theorem 1
Corollary 4. (‘Variation of Theorem 1’ - Restatement of Corollary 2) Consider the setting and notation
of Theorem 1. For all β ∈ [0, β∗], it holds that

Ẽ
Z0

[
L(A|Z̃0;D)− L(A|Z̃0; Z̃0)

]
≤

(1 ∧ 2β) · Ẽ
Z0

[
R(A|Z̃0; Z̃0)

]
+ 4 ·

 E
Z̃0,Z̃1

[
KL
(
A|Z̃0

∥∥∥π|〈Z̃0, Z̃1〉
)]

nηmax


1

2−β

[∗∗]

. (27)

The proof follows by a few modifications of the proof of the main Theorem 1.

Proof Sketch. The proof would be the same up to and including the derivation of inequality (14), where
η < ηmax is not random. At this step, we can weaken this ESI to an in-expectation inequality, subsequently
derive and add the equivalent of inequalities (18) and (19), to yield

Ẽ
Z0

[
L(A|Z̃0;D)− L(A|Z̃0; Z̃0)

]
≤

(1 ∧ 2β) · Ẽ
Z0

[
R(A|Z̃0; Z̃0)

]
+ 2 ·

( η

ηmax

) 1
1−β

+

E
Z̃0,Z̃1

[
KL
(
A|Z̃0

∥∥∥π|〈Z̃〉)]
nη

.

By differentiation, we choose η =

ηmax ∧ (1− β)
1−β
2−β η

1
2−β
max

(
E

Z̃0,Z̃1

[KL(A|Z̃0‖π|Z̃)]

nηmax

) 1−β
2−β
 to minimize the sum

of the last two terms of the RHS of the inequality, which gives the improved in-expectation bound:

Ẽ
Z0

[
L(A|Z̃0;D)− L(A|Z̃0; Z̃0)

]
≤ (1 ∧ 2β) · Ẽ

Z0

[
R(A|Z̃0; Z̃0)

]
+ 4 ·

 E
Z̃0,Z̃1

[
KL
(
A|Z̃0

∥∥∥π|Z̃)]
nηmax


1

2−β

[∗∗]

,

where ab[∗∗] = max{ab, a}.

B.4 Proof of Theorem 2 (VC classes)
First, we formally define the global consistency property. Here we abuse notation by interchanging between
(X × Y)n and Xn × Yn. That is, we refer to (x, y) ∈ (X × Y)n when we mean x ∈ Xn and y ∈ Yn. We also
use (and abuse) the notation (X × Y)∗ :=

⋃∞
n=0(X × Y)n. Thus the notation (x, y) ∈ (X × Y)∗ means, for

some n, we have x ∈ Xn and y ∈ Yn.

Definition 10 (Global Consistency Property). Let F be a class of functions f : X → Y. A deterministic
algorithm A : (X × Y)∗ → F is said to have the global consistency property if the following holds. Let
(x, y) ∈ (X ×Y)∗ and let f = A|(x, y). We require that, for any x′ ∈ X ∗ such that x′ contains all the elements
of x (i.e., ∀i ∃j xi = x′j), we have A|(x′, y′) = f whenever y′i = f(x′i) for all i.

Informally, this property says the following. Suppose the algorithm is run on some labelled dataset (x, y)
to obtain an output hypothesis f = A|(x, y). If the dataset is relabelled to be perfectly consistent with f ,
then the algorithm should still output f . This should also hold if further examples are added to the dataset
(where the additional examples are also consistent with f).

The proof of the theorem is split in the next two lemmata.
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Lemma 4. Let A : (X × {0, 1})n → F be a deterministic algorithm, where F is a class of functions
f : X → {0, 1} with VC dimension d. Suppose A (appropriately extended to inputs of arbitrary size) has the
global consistency property. Then for any z̃0, z̃1 ∈ Zn,

KL(A|z̃0‖π|〈z̃0, z̃1〉) ≤ d log(2n).

Lemma 5. Let F be a class of functions f : X → {0, 1}. Then there exists a deterministic algorithm
A : (X × {0, 1})∗ → F that has the global consistency property and is an empirical risk minimizer – that is,
for all (x, y) ∈ (X × {0, 1})∗, if f∗ = A|(x, y), then∑

i

I[f∗(xi) 6= yi] = min
f∈F

∑
i

I[f(xi) 6= yi].

To prove Lemma 4 we invoke the Sauer-Shelah lemma:3

Lemma 6 (Sauer [1972], Shelah [1972]). Let F be a class of functions f : F → {0, 1} with VC dimension d.
For any x = {x1, · · · , xm} ⊂ X , the number of possible labellings of x induced by F is

|{(f(x1), f(x2), · · · , f(xm)) : f ∈ F}| ≤
d∑
k=0

(
m

k

)
≤

 (em/d)d if m ≥ d
e2 · (m/2)d if m ≥ 2
e ·md if m ≥ 1

.

Here we define
(
m
k

)
= 0 if k > m. Thus

∑d
k=0

(
m
k

)
= 2m if m ≤ d. Note that we give three different forms

of the final bound for convenience, all of which are derived from the bound

∀m ≥ d ∀x ≥ 1

d∑
k=0

(
m

k

)
≤

d∑
k=0

(
m

k

)
xd−k ≤

m∑
k=0

(
m

k

)
xd−k =

(
1 + x−1

)m · xd ≤ em/x · xd.
Proof of Lemma 4. Let z̃ = (z̃0, z̃1) be the fixed supersample and let x̃ = {x : ∃y ∈ {0, 1}, i ∈ [n], j ∈ {0, 1} :
(x, y) = z̃i,j} be the set of all unlabelled examples in z̃. We choose as an almost exchangeable prior distribution
π the following: π(f) = I{∃s ∈ {0, 1}n : A|z̃s = f}/|H(z̃)|, where H(z̃) = {A|z̃s for some s ∈ {0, 1}n}. That
is, π is uniform over all the possible outputs of algorithm A given input z̃s for some s ∈ {0, 1}n. Then the
KL term is written as

KL(A|z̃0‖π|〈z̃0, z̃1〉) = log
1

π(A|z̃0)
= log

|H(z̃)|
I{∃s ∈ {0, 1}n : A|z̃s = A|z̃0}

= log |H(z̃)|.

It suffices to bound |H(z̃)|. By the global consistency property, if A|z̃s = f for some s ∈ {0, 1}n, then it must
be that A|(x̃, f(x̃)) = f . Therefore

H(z̃) ⊆ {A|(x̃, f(x̃)) : f ∈ F} ⊆ {f(x̃) : f ∈ F}

By Lemma 6, the set of all the possible labellings of x̃ ∈ X 2n by F has size at most |{f(x̃) : f ∈ F}| ≤ (2n)d.
Thus, |H(z̃)| ≤ (2n)d and the bound of the lemma follows.

Lemma 5 is exaclty the same as the corresponding lemma in the proof of the CMI result of Steinke and
Zakynthinou [2020]. We present their proof here to give a clear picture of the type of algorithm that could
satisfy the lemma for our examples.

For the proof, we will invoke the well-ordering theorem Zermelo [1904]:

Lemma 7 (Zermelo [1904]). Let F be a set. Then there exists a binary relation � with the following
properties.

• Transitivity: ∀f, g, h ∈ F f � g ∧ g � h =⇒ f � h

• Totality: ∀f, g ∈ F f � g ∨ g � f
3Vapnik and Chervonenkis proved a slightly weaker bound, namely |{(f(x1), f(x2), · · · , f(xm)) : f ∈ F}| ≤ md+1 + 1 for

m > d [Vapnik and Chervonenkis, 1971, Thm. 1].
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• Antisymmetry: ∀f, g ∈ F f � g ∧ g � f ⇔ f = g

• Well-order: ∀H ⊂ F ( H 6= ∅ =⇒ ∃h ∈ H ∀f ∈ H h � f )

Let � be a well-ordering of F . On a finite computer, we could simply let � be the lexicographical ordering
on the binary representations of elements of F .

Proof of Lemma 5. An empirical risk minimizer A : (X × {0, 1})n → F must have the property

∀(x, y) ∈ (X × {0, 1})n A|(x, y) ∈ arg min
f∈F

`(f, (x, y)) :=

{
f ∈ F : `(f, (x, y)) = inf

f ′∈F
`(f ′, (x, y))

}
.

However, we must also ensure that A satisfies the global consistency property. The only difficulty that arises
here is when the argmin contains multiple hypotheses; we must break ties in a consistent manner. (Note
that the argmin is never empty, as the 0-1 loss `(f ′, (x, y)) = 1

n

∑n
i=1 I[f ′(xi) 6= yi] always takes values in the

finite set {0, 1/n, 2/n, 3/n, · · · , 1}.)
Whenever there are multiple f ∈ F that minimize `(f, (x, y)), our algorithm A|(x, y) chooses the least

element according to the well-ordering. In symbols, A satisfies the following two properties, which also
uniquely define it.

∀(x, y) ∈ (X × {0, 1})∗ ∀h ∈ F

 `(A|(x, y), (x, y)) ≤ `(f, (x, y))
∧

`(A|(x, y), (x, y)) = `(f, (x, y)) =⇒ A|(x, y) � f

.
By construction, our algorithm A is an empirical risk minimizer. It only remains to prove that it satisfies

the global consistency property. To this end, let (x, y) ∈ (F × {0, 1})n and let x′ ∈ Xm where x′ contains all
the elements of x (i.e., ∀i ∈ [n] ∃j ∈ [m] xi = x′j). Let f = A|(x, y) and f ′ = A|(x′, f(x′)). We must prove
that f ′ = f .

By construction, the empirical loss of f on the dataset (x′, f(x′)) is 0. Since f ′ is the output of an
empirical risk minimizer on the dataset (x′, f(x′)), it too has empirical loss 0 on this dataset. In particular,
f(x′j) = f ′(x′j) for all j ∈ [m]. Moreover, since A breaks ties using the ordering, we have f ′ � f . However,
since f and f ′ agree on x′, they also agree on x and, hence, have the same loss on the dataset (x, y) – that is,
`(f ′, (x, y)) = `(f, (x, y)) = infhf ′∈F `(f

′′, (x, y)). This means that A|(x, y) outputting f implies that f � f ′.
Thus we conclude that f = f ′, as required.

B.5 Proof Sketch for Gibbs example
Proof Sketch. A known property of the η̂-Gibbs algorithm (see for example [Grünwald and Mehta, 2020])
relative to prior W | z̃0 is that, among all learning algorithms A that output a distribution on F , for all z̃0 it
achieves

min
A
R(A|z̃0; z̃0) +

KL(A|z̃0‖W |z̃0)

nη̂
. (28)

Now assume that the prior W is a compression scheme prior of some size k and let π|〈·〉 denote the
corresponding almost exchangeable prior satisfying (22). If we consider the proof of Theorem 1 again, we see
that if we set A := AGibbs to the Gibbs algorithm, and A′ to any other learning algorithm, then the crucial
inequality (15) in the proof of Theorem 1 still holds with R(A|Z̃0; Z̃0) on the right-hand side replaced by
R(A′|Z̃0; Z̃0) and ub set to KL

(
A′|Z̃0

∥∥∥W |Z̃0

)
+ k log 2n. Following all the remaining steps in the proof while

keeping ub in its new definition and keeping the distinction between A′ and A, we get the following corollary
of Theorem 1: if we set A to the Gibbs algorithm relative to size k compression scheme prior W , and A′ to
any other algorithm, we have, with the same abbreviations as in Theorem 1

L(AGibbs|Z̃0;D) EZ̃0
η

L(A′|Z̃0; Z̃0) + (1 ∧ 2β) ·R(A′|Z̃0; Z̃0) + 8 ·

KL
(
A′|Z̃0

∥∥∥W |Z̃0

)
+O(k log n)

nηmax

1/(2−β)

[∗∗]

+
6η

n
.

24


	1 Extended Introduction
	1.1 Related Work; Other Extensions of the Standard PAC-Bayesian Equation

	2 Preliminaries
	2.1 KL divergence and Mutual Information
	2.2 ESI Calculus
	2.3 Bernstein Condition

	3 Main Development
	3.1 Applications
	3.1.1 VC classes
	3.1.2 Compression Scheme Priors


	4 Conclusion and Future Work
	A Glossary
	B Omitted proofs
	B.1 Linearized version of Bernstein Condition
	B.2 Proof of main technical Lemma 1
	B.3 Improved in-expectation bound - `Variation' of Theorem 1
	B.4 Proof of Theorem 2 (VC classes)
	B.5 Proof Sketch for Gibbs example


