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We study worst-case growth-rate optimal (GROW) e-statistics for hy-
pothesis testing between two group models. If the underlying group G acts
freely on the observation space, there exists a maximally invariant statistic
of the data. We show that among all e-statistics, invariant or not, the likeli-
hood ratio of the maximally invariant is GROW and that an anytime valid test
can be based on this likelihood ratio. By virtue of a representation theorem
of Wijsman, it is equivalent to a Bayes factor with a right Haar prior on G.
Such Bayes factors are known to have good frequentist and Bayesian proper-
ties. We show that reductions through sufficiency and invariance can be made
in tandem without affecting optimality. A crucial assumption on the group
G is its amenability, a well-known group-theoretical condition, which holds
for general scale- and location families as well as finite-dimensional linear
regression.

1. Introduction. Classically, hypothesis tests for group-invariant situations have been
studied in great detail both for fixed-sample-size and sequential experiments (Cox, 1952;
Hall, Wijsman and Ghosh, 1965; Eaton, 1989; Lehmann and Romano, 2005). Neverthe-
less, due to methodological concerns about combining evidence from multiple experi-
ments using classical methods, a theory of testing based on e-statistics has been devel-
oped (Vovk and Wang, 2021; Grünwald, de Heide and Koolen, 2020; Ramdas et al., 2020).
(e-statistics are more commonly known as e-variables or, in analogy to p-values, e-values; we
call them e-statistics here to emphasize that they are, in fact, statistics of the data) The main
concern that is successfully addressed by testing with e-statistics is that of error control in
two common situations: when experiments are optionally stopped, and when aggregating the
evidence of interdependent experiments that may themselves have been optionally stopped.
The first of these situations is often referred to as anytime validity; the second, as optional
continuation. As a contribution to this line of work, we characterize optimal e-statistics in
group-invariant situations. As we will see, such situations include testing under linear-model
and Gaussian assumptions. We focus on testing procedures that are simultaneously anytime
valid and allow for optional continuation.

We concern ourselves with testing composite hypotheses where both null and alterna-
tive models remain unchanged under a group of transformations. In particular, we study the
situation where the parameter of interest is a function δ = δ(θ) of the model parameter θ
that is invariant under such transformations. For example, in the Gaussian case, the coeffi-
cient of variation is invariant under scale changes; the correlation coefficient, under affine
transformations; and the variance of the principal components, under rotations around the
origin. Roughly speaking, by replacing the data Xn = (X1, . . . ,Xn) by an invariant function
Mn =mn(X

n), one discards all information that is not relevant to the parameter δ. Through
the lens of the invariance-reduced data Mn, the hypotheses about the parameter of interest δ
may simplify. This reduction principle has been used successfully to obtain sequential tests
for composite hypotheses (Hall, Wijsman and Ghosh, 1965).
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In this article we characterize e-statistics that are growth rate optimal in the worst case
(GROW), as defined by Grünwald, de Heide and Koolen (2020) (see Section 1.2 for defi-
nitions), and use them for sequential testing. The main result of this article is the follow-
ing: under regularity conditions, when the test about the invariance-reduced data Mn be-
comes a simple-vs.-simple test, the GROW e-statistic is the likelihood ratio statistic for Mn.
Our main result covers the case in which the null expresses that the parameter of interest
is equal to some fixed δ0, and the alternative expresses that it is equal to some fixed δ1;
later on in the paper we extend this to settings with sets ∆0 and ∆1, including the case in
which prior distributions on these sets are available. In proving the main result, we use The-
orem 1 of (Grünwald, de Heide and Koolen, 2020), which shows an equivalence between
finding a GROW e-statistic and performing a joint minimization of the Kullback-Leibler
(KL) divergence between the convex hulls of both null and alternative sets of distributions.
The main technical contribution of this article is showing that the value of this joint mini-
mization problem is the KL divergence between the distributions of a maximally invariant
function Mn, a function that, informally, looses as little information as possible about the
invariant component of the data. One of the key assumptions for this result to hold is the
amenability of the group G, a well known group-theoretical condition (Bondar and Milnes,
1981). This condition plays a fundamental role in the celebrated theorem of Hunt and Stein
(Lehmann and Romano, 2005, Section 8.5), that relates tests that are max-min optimal for
statistical power to group invariant tests. The concepts of power and GROW are to some mild
extent related (Grünwald, de Heide and Koolen, 2020, Section 7): one may view GROW as
the analogue of power in an optional continuation setting, in which a direct optimization of
power leads to useless tests. Thus, there is an analogy between Hunt-Stein and our results, but
the proof techniques that are required for our result, and that we develop, are quite different
(see Section 1.3). We further investigate e-statistics that are relatively GROW (abbreviated to
REGROW by Grünwald, de Heide and Koolen (2020)), a closely related optimality criterion
(see Section 1.2). We show that, as opposed to the general case, any GROW e-statistic is also
relatively GROW in the group-invariant situation. If data are gathered sequentially, we show
that the GROW e-statistic, the likelihood ratio for a maximally invariant function of the data,
can be used for anytime valid sequential testing; the sequence of optimal e-statistics becomes
a test martingale, i.e. a nonnegative martingale with starting value 1, the mathematical object
that forms the basis for anytime-valid testing (Shafer, 2021; Grünwald, de Heide and Koolen,
2020). With an eye towards aggregating evidence from potentially randomly stopped experi-
ments, we describe when the optionally stopped optimal e-statistic remains an e-statistic, and
show how data can be further reduced if a sufficient statistic for the invariant parameter is
available. For the latter purpose, a result of C. Stein, reported by Hall, Wijsman and Ghosh
(1965), is instrumental.

The rest of this introduction is organized in the following manner. In Section 1.1, we intro-
duce formally our setup for hypothesis testing under group invariance. There, in Example 1.1,
we show how the t-test fits in our setup. In Section 1.2, we define e-statistics, our main objects
of study, and define our optimality criteria. In Section 1.3, we give an informal exposition of
our main result, Corollary 4.3, about the characterization of optimal e-statistics for group-
invariant situations, and Theorem 4.2, the main technical contribution of this article, on joint
KL divergence minimization. There, in a continuation of Example 1.1, we explain the con-
sequences for the t-test. In Section 1.4 we make a brief recount of the main motivations for
the use of e-statistics for testing. In Section 1.5 we highlight previous work made in group-
invariant testing and in Section 1.6 we introduce notation. Finally, in Section 1.7 we outline
the rest of the article. Happy reading.
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1.1. Group invariance. In this section we describe the group-invariant hypotheses that
are of our current interest. In Example 1.1, as our guiding example, we show how the t-
test fits in this framework. More precisely, assume that a group G acts freely on both the
observation space X and the parameter space Θ. Denote the action of G on X by (g,X) 7→
gX for g ∈ G and X ∈ X . For samples of size n, we extend the action of G on X to X n

componentwise, that is, by (g,Xn) 7→ gXn := (gX1, . . . , gXn) for g ∈G and Xn ∈X n. By
invariance of a probabilistic model P = {Pθ : θ ∈ Θ} on X n we understand that, for any
g ∈G and measurable B ⊆X n and parameter θ ∈Θ, the distribution Pθ satisfies

(1) Pθ{Xn ∈B}=Pgθ{Xn ∈ gB},
where gB = {gb : b ∈ B} is the left translate of the set B by g. In particular, we study
situations where the parameter of interest δ = δ(θ) indexes the orbits in the parameter space
Θ under the action of G. More formally, we assume that δ is a maximally invariant function
of the parameter θ, meaning that, for any pair θ, θ′ ∈Θ, there exists g such that gθ = θ′ any
time that δ(θ) = δ(θ′). In that case, we say that δ is a maximally invariant parameter. We are
prepared to state the main statistical hypothesis testing problem of interest for this work. For
two possible values δ1, δ0 of δ, we consider the composite vs. composite testing problem

(2) H0 : δ(θ) = δ0 vs. H1 : δ(θ) = δ1.

As is known, many classical parametric problems can be cast in this shape. Let us call maxi-
mally invariant any G-invariant function Mn =mn(X

n) that indexes the orbits of the action
of G on X n. The distribution of Mn depends on θ only through the maximal invariant param-
eter δ, and, under this reduction, the problem (2) becomes simple. It is with the optimality of
this reduction that we are concerned. In Section 8, we study cases in which, even after the in-
variance reduction, the problem under study remains composite. Before defining e-statistics,
our main objects of study, we spell out how the t-test fits in this framework.

EXAMPLE 1.1 (t-test under Gaussian assumptions). Consider an iid sample Xn =
(X1, . . . ,Xn) of size n from an unknown Gaussian distribution N(µ,σ), and testing whether
µ/σ = δ0 or µ/σ = δ1. The parameter space Θ consists of all pairs µ ∈ R and σ ∈ R

+ and
the Gaussian model is invariant under scale transformations. The group G= (R+, · ) of pos-
itive real numbers with multiplication acts on Θ by (c, (µ,σ)) 7→ (cµ, cσ) for each c ∈ R

+

and (µ,σ) ∈ Θ. The parameter of interest is the ratio δ = µ/σ between the mean µ and the
standard deviation σ. The parameter δ is scale-invariant and indexes the orbits of the action
of G on Θ. The group G acts on the observation space X =R

n by coordinatewise multipli-
cation. A maximally invariant statistic is Mn =mn(X

n) = (X1/ |X1| , . . . ,Xn/ |X1|), and
its distribution only depends on the maximally invariant parameter δ = µ/σ.

1.2. The family of e-statistics. We now define e-statistics, our measure of evidence for
the alternative over the null hypothesis. Given two subsets Θ0,Θ1 of the parameter space
Θ, interpreted as the null and an alternative hypothesis, the family of e-statistics comprises
all nonnegative functions of the data Xn ∈ X n whose expected value is bounded by one
under all elements of the null (Grünwald, de Heide and Koolen, 2020), that is, all statistics
Tn(X

n)≥ 0 such that

(3) sup
θ0∈Θ0

Eθ0 [Tn(X
n)]≤ 1.

The main implication of this definition is that the test 1{Tn(X
n)≥ 1/α} has type-I error

smaller than α and that the evidence, measured with e-statistics from multiple experiments,
can be easily aggregated (see Section 1.4). When the null is simple (Θ0 is a singleton), e-
statistics coincide with likelihood ratios and Bayes factors; when the null is composite, some
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Bayes factors are still e-statistics but usually they are not (Grünwald, de Heide and Koolen,
2020). Shafer (2021) explains and emphasizes their transparent betting interpretation, and
simply calls them bets.

The traditional optimality criterion for hypothesis tests satisfying a Type-I error guar-
antee is their fixed-sample size or fixed-stopping rule worst-case power maximization.
This criterion cannot be used in a context with optional stopping, since the definition
of power requires that we know the stopping rule in advance, contradicting the idea of
‘optional stopping’ (Grünwald, de Heide and Koolen, 2020). Instead, we concern ourselves
with e-statistics that are growth-rate optimal in the worst case (GROW), as defined by
Grünwald, de Heide and Koolen (2020). Should it exist, an e-statistic T ∗

n is GROW if it max-
imizes the worst-case expected logarithmic value under the alternative hypothesis, that is, if
it maximizes

(4) Tn 7→ inf
θ1∈Θ1

Eθ1 [lnTn(X
n)]

over all e-statistics. The idea is that, under the alternative, one wants to gather evidence
as fast as possible, so it makes sense to maximize expectation of f(Tn(X

n)) under the al-
ternative, for some increasing function f . Shafer (2019); Grünwald, de Heide and Koolen
(2020) extensively argue why it makes sense to take f as the logarithm, an idea also
known as Kelly betting (Kelly, 1956). Given the worst-case nature of this criterion,
Grünwald, de Heide and Koolen (2020) explain that the GROW e-statistic is too conservative
in some scenarios and cannot be used if the alternative can be arbitrarily close the null (in the
t-test example, this would mean that the effect size under the alternative is unknown). As a
response to this issue, they propose to instead maximize a relative form of (4) to obtain less
conservative e-statistics outside the worst-case regime (see also Turner, Ly and Grünwald
(2021) who, in their contingency table setting, achieve excellent results in practice with this
relative criterion, but not with the absolute criterion). With this in mind, we say that an e-
statistic T ∗

n is relatively GROW if it maximizes the gain in expected logarithmic value relative
to an oracle that is given the particular distribution in the alternative hypothesis from which
data are generated, that is, if T ∗

n maximizes, over all e-statistics,

(5) Tn 7→ inf
θ1∈Θ1

{

Eθ1 [lnTn(X
n)]− sup

T ′
n e-stat.

Eθ1 [lnT
′
n(X

n)]

}

.

As we we will see and contrary to the general case, in our group-invariant setting, any GROW
e-statistic is also relatively GROW, so we can avoid a discussion which of the two is more
appropriate. While acknowledging that there may be situations in which an e-statistic opti-
mality property distinct from GROW is more relevant, in the remainder of this paper we will
simply take the goal of achieving (relative) GROW for granted, without further motivation.
With this in mind, we now turn to an informal discussion of the main results of this article.

1.3. Main results. We now informally outline the main results of this article. The main
result of this article is Corollary 4.3, a characterization of the GROW e-statistic for the
group-invariant problem defined in (2). This corollary is a consequence of Theorem 4.2,
our main technical contribution, which will be described in Section 1.3.1. We now describe
them informally. Recall that once data are reduced through a maximally invariant function
Mn = mn(X

n) for the action of G on X n, the testing problem (2) becomes simple. We
extend our results to situations when the invariance-reduced problem is still composite in
Section 8. Sidestepping technicalities, the main result is the following theorem.

COROLLARY 1.2 (Informal statement of Corollary 4.3). Under a number of technical
conditions, among all possible e-statistics, G-invariant or not, the likelihood ratio T ∗

n =
pMn

δ1
/pMn

δ0
for any maximally invariant function Mn =mn(X

n) is GROW for (2).
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We show further in Proposition 4.4 that, in our group-invariant situation, any GROW e-
statistic is also relatively GROW, as defined in Section 1.2. With this theorem at hand, we
characterize optimal e-statistics for group-invariant situations in fixed-sample experiments.
We now turn our attention to sequential experiments, where data X1,X2, . . . are gathered
one by one. Here, a sequential test is a sequence of zero-one-valued statistics ξ = (ξn)n∈N
adapted to the natural filtration generated by X1,X2, . . . . We consider the test defined by
ξn = 1{T ∗

n ≥ 1/α} for some value α, whose anytime validity we prove. Additionally, we
show that, for certain stopping times N ≤∞, the optionally stopped e-statistic T ∗

N remains
an e-statistic, which validates its use for for optional continuation.

PROPOSITION 1.3. Let T ∗ = (T ∗
n)n∈N, where, for each n, T ∗

n is the likelihood ratio for
the maximal invariants Mn =mn(X

n) for the action of G on X n. Let ξ = (ξn)n∈N be the
sequential test given by ξn = 1{T ∗

n ≥ 1/α}. Then the following hold:

1. The sequential test ξ is anytime valid at level α, that is,

sup
θ0∈Θ0

Pθ0 {ξn = 1 for some n ∈N} ≤ α.

2. Suppose that N ≤∞ is a stopping time with respect to M = (Mn)n∈N. Then the option-
ally stopped e-statistic T ∗

N is also an e-statistic, that is,

(6) sup
θ0∈Θ0

Eθ0 [T
∗
N (XN )]≤ 1.

The proof of this result is, by now, standard; we perform it in Section 6. The main in-
gredient is showing, using the ideas of Hall, Wijsman and Ghosh (1965), that the process
T ∗ = (T ∗

n)n∈N is a nonnegative martingale with respect to the sequence of maximally invari-
ants and that is has expected value 1. An inequality of Ville (1939) and standard optional
stopping theorems give the desired results (see the work of Ramdas et al. (2020) for more
details). In regards to item 2 in Proposition 1.3, it is natural to ask whether (6) also holds
for stopping times that are adapted to the full data (Xn)n but not to (Mn)n can be allowed
(in our t-test example, this could be a stopping time N∗ such as ‘N∗ := 1 if |X1| 6∈ [a, b];
N∗ = 2 otherwise’ for some 0 < a < b). The answer is negative: in Appendix B, we show
that, for appropriate choice of a, b, this N∗ provides a counterexample. This means that such
non-adapted N∗ cannot be used in an optional continuation context, a subtle point explained
by Grünwald, de Heide and Koolen (2020, Section 5).

Before turning to our main technical contributions, we anticipate further results and show
their implication to our guiding example, the t-test. In Section 5, we utilize the invariance
and sufficiency reductions of Hall, Wijsman and Ghosh (1965) to conclude that monitoring
the likelihood ratio for M1,M2, . . . is equivalent to monitoring the likelihood ratio of a suffi-
cient statistic for the maximally invariant parameter δ (see Proposition 5.2). In Section 7 we
show two applications to testing under multivariate Gaussian assumptions: testing whether
the population mean zero, and testing whether a linear regression coefficient is zero. In Sec-
tion 8 we show further extend Corollary 1.2 to cases where the null and alternative hypotheses
are still composite even after an invariance reduction of the data (see Proposition 8.1).

1.3.1. Technical contributions. From a technical point of view, our main contribution is
Theorem 4.2, a computation the infimum value of the Kullback-Leibler (KL) divergence be-
tween elements in the convex hulls of the null and alternative models in (2). In Section 2, we
show in detail how our approach operates in the simpler case when G is finite or compact.
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The main contribution in this article then, is the extension of this result to a large class of
noncompact groups for which almost right-invariant probability measures exist. The exis-
tence of such measures on G is known as amenability (Bondar and Milnes, 1981), and it is
the key assumption in our results. The amenability condition, as will be stated Definition 2.1,
is the same that is used in the classical theorem of Hunt and Stein (Lehmann and Romano,
2005, Section 8.5), and, as we will see, it guarantees the existence of almost-right-invariant
priors on the group G. The proof techniques that are needed for the results of this work are,
however, distinct. Hunt-Stein’s theorem shows that, when looking for a test that is max-min
optimal in the sense of power, it is enough to look among group-invariant tests. At the core of
the proof of the Hunt-Stein theorem lays the fact that the power is a linear function of the test
under consideration. In its proof, an approximate symmetrization of the test is carried using
almost-right-invariant priors without affecting power guarantees. This line of reasoning can-
not be directly translated to our setting because of the nonlinearity of the objective function
that characterizes GROW e-statistics.

Besides the main technical contribution Theorem 4.2, additional novel mathematical re-
sults are in Proposition 4.4, relating GROW to relative GROW, and the propositions in Sec-
tion 8, extending Theorem 4.2 to settings in which H0 and H1 refer to composite sets of δ’s
and may be equpied with a prior ditribution for these δ’s.

1.4. Motivation. Testing based on e-statistics addresses methodological concerns about
testing procedures based on p-values (Royall, 1997; Wagenmakers, 2007; Benjamin et al.,
2018; Grünwald, 2022). The main concerns that are addressed by using e-statistics for test-
ing is that of sequentially aggregating the evidence of possibly nonindependent experiments
while keeping type-I error guarantees (Wang and Ramdas, 2020; Vovk and Wang, 2020).
This is referred to as optimal continuation, for the decision to perform a new study at all
may depend on the outcomes of the previous one. For example, in medical research, the
decision to perform a new trial usually depends on already existing data. The intricate depen-
dencies within trials might be very hard or impossible to model and make it almost impossible
to provide Type-I error guarantees for existing meta-analysis methods (that often implicitly
presume their independence (Ter Schure and Grünwald, 2019)). Therefore, the ability to ag-
gregate evidence with error control under such dependencies, as is achieved with e-statistics,
becomes crucial. Relatedly, e-statistics also offer advantages over p-values in some multiple
testing settings. Consequently, a wide interest in e-statistics has kindled in recent years —
as a small sample we mention (Shafer, 2021; Henzi and Ziegel, 2021; Ramdas et al., 2021;
Wang and Ramdas, 2022; Ren and Barber, 2022). This article is a contribution to this grow-
ing body of work. The technical properties that allow for type-I error control under optional
continuation are the following two:

1. The type-I error of the test that rejects the null hypothesis anytime that T (X) ≥ 1/α
is smaller than α, a direct consequence of Markov’s inequality and the definition of e-
statistic.

2. If X1 and X2 are the outcomes of two experiments and X2 7→ T2(X2) is an e-statistic con-
ditionally on the value of the e-statistic X1 7→ T1(X1), then T (X1,X2) = T1(X1)T2(X2)
is also an e-statistic.

Hence, the test 1{T (X1,X2)≥ 1/α} based on the aggregated e-statistic T (X1,X2) =
T1(X1)T2(X2) still has type-I error guarantees. The extension to more outcomes is straight-
forward. It is in this sense that testing based on e-statistics allows for optional continuation.

1.5. Previous work. Invariance, as data-reduction method, has a long tradition in statis-
tics (Eaton, 1989). Perhaps the closest result to the ones we present is the classical theo-
rem of Hunt and Stein (see Lehmann and Romano, 2005, Section 8.5). It establishes that,
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in group-invariant models like the ones we treat here, there is no loss in considering only
group-invariant tests when searching for most powerful tests. The relation of data reductions
based in invariance and sufficiency are well understood (Hall, Wijsman and Ghosh, 1965). In
the Bayesian literature, group-invariant inference with right Haar priors has been thoroughly
studied (Dawid, Stone and Zidek, 1973; Berger, Pericchi and Varshavsky, 1998). It has been
shown that, in contrast to some other improper priors, inference based on right Haar pri-
ors yields admissible procedures in a decision-theoretical sense (Eaton and Sudderth, 2002,
1999) However, there have also been concerns in the Bayesian literature (Sun and Berger,
2007; Berger and Sun, 2008) that in some situations, the right Haar prior is not uniquely de-
fined, and different choices lead to different conclusions. Interestingly, as we discuss in Sec-
tion 9, in our setting this issue cannot arise. Finally, we mention (Liang and Barron, 2004)
who provide exact minimax procedures for predictive density estimation for general location-
and scale-families under Kullback-Leibler loss. Although there are clearly some similarities,
the precise minimax result they prove is quite different; we provide a more detailed compar-
ison in Section 9.

1.6. Notation. We used the notation that has been most convenient for our understanding.
We use linear functional notation for integrals: instead of

∫
f(x)dP(x), we write P[f(X)] or

P[f ]. When it is important to specify the variable of integration we write Px[f(x, y)] instead
of
∫
f(x, y)dP(x). We use lower case symbols in superscript for variables that are being

integrated over. For the probability that Xn ∈ B under P we write P{Xn ∈ B}. We use P

to refer to to the distribution of Xn according to P. For a measurable function T = T (Xn),
we write PT for the image measure of P under T , that is, PT {T ∈ B} = P{T (X) ∈ B}.
When writing conditional expectations, we write P[f(X)|Y ] instead of EP[f(X)|Y ], and
write PX

Y for the conditional distribution of X given Y . We only deal with situations where
such conditional distributions exist. For a prior distribution Πθ on some parameter space
Θ, we write ΠθPX

θ for the marginal distribution that assigns probability ΠθPX
θ {X ∈B}=

∫
Pθ{X ∈ B}dΠ(θ) to any measurable set B. For the posterior distribution of θ given X

we write Πθ
X . Given two subsets H,K of a group G we write HK = {hk : h ∈H,k ∈K}

for the set of all possible products between an element of H and an element of K. Similarly,
for an element g ∈G and a subset K of G, we define gK = {gk : k ∈K}, the translation of
K by g, and K−1 = {k−1 : k ∈K}, the set of inverses of K. We say that K is symmetric if
K =K−1.

1.7. Outline. The rest of this article is structured as follows. We begin by describing
our approach for finite and compact groups in Section 2. There, we also describe the chal-
lenges that are encountered when dealing with general groups and introduce the main group-
theoretical condition, amenability. Next, in Section 3, we lay down formally the conditions
necessary for our main results. In Section 4, we state the main results of this article in full.
We continue in Section 5 by discussing our approach in the presence of a sufficient statistic
for the models under consideration. We show, under regularity conditions, that there is no
loss in further reducing the data through a sufficient statistic. With regards to anytime-valid
testing, the subject of Section 6 is to show Proposition 1.3. In Section 7 we apply our results
to two examples: one about testing whether a linear regression coefficient is zero, and other
about testing whether a multivariate population mean is zero under Gaussian assumptions. In
Section 8 we extend our results to cases in which, even after an invariance reduction of the
data, the hypotheses at hand remain composite. We end this article with Section 9, where we
discuss our results; and Section 10, where we give the proofs omitted from the rest of the
text.
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2. Technical outline. This section shows our techniques in the simple case when the
group G in question is finite, and is intended to delineate our approach. Next, we describe
how we generalize the result to noncompact amenable groups, and point at the difficulties that
are found. Consider again the problem described in (2). Using that the action of the group
on the parameter space is free, we can reparametrize each orbit in Θ/G with G. Indeed,
we can pick an arbitrary but fixed element in the orbit θ0 ∈ δ0 and, for any other element
θ ∈ δ0, we can identify θ with the group element g(θ) that transports θ0 to θ, that is, such that
g(θ)θ0 = θ. Hence, with a slight abuse of notation, we can identify θ ∈ δ0 with g = g(θ) ∈G
and identify Pθ =Pg(θ)θ0 with Pg . With analogous definitions, for a fixed θ1 ∈ δ1, the same
identification can carried in the alternative model by an analogous choice θ1. In order to
make notation more succinct, we use Q = {Qg}g∈G to denote the alternative hypothesis to
P = {Pg}g∈G. We assume that each member of Q is absolutely continuous with respect to
each member of P . With these remarks at hand, the starting problem (2) can be rewritten in
the form

(7) H0 :X
n ∼Pg, for some g ∈G, vs. H1 :X

n ∼Qg, for some g ∈G.

As will follow from our discussion, our results are insensitive to the choices of θ0 and θ1.
Using the invariance of the models, we show in Proposition 4.4 that, in our setting, an e-
statistic is GROW if and only if it is relatively GROW (see Section 1.2 for definitions).

2.1. Finite groups. Start by assuming that G is a finite group. For instance, a group of
permutations. Then, the representation theorem of Wijsman states that, if Mn =mn(X

n) is
a maximally invariant function of Xn, the distribution of Mn can be computed by averaging
over the group. Since Mn is G-invariant, then its distribution does not depend on g. We call
Pn and QMn the distributions of Mn under of the respective members of P and Q, and pMn

and qMn their respective densities. Then, the so far hypothesized GROW e-statistic T ∗
n , the

likelihood ratio for the maximal invariant Mn =mn(X
n), satisfies

(8) T ∗
n(X

n) =
qMn(mn(X

n))

pMn(mn(Xn))
=

1
|G|
∑

g∈G qg(X
n)

1
|G|
∑

g∈G pg(Xn)
.

For finite parameter spaces, as in our current case, Theorem 1 of Grünwald, de Heide and Koolen
(2020) takes a simple form: the value of the max-min problem that defines a GROW e-statistic
coincides with that of a KL minimization problem, that is,

(9) max
Tn e-stat.

min
g∈G

Qg[lnTn(X
n)] = min

Π0,Π1

KL(Πg1
1 Qg1 ,Π

g0
0 Pg0),

where KL(Q,P) = Q[ln(q/p)] is the KL divergence, and the minimum on the right hand
side is taken over all pairs of distributions on the group G. An application of the information
processing inequality implies that, for any pair of probability distributions on G,

KL(Πg1
1 Qg1,Π

g0
0 Pg0)≥KL(QMn ,PMn) = min

g∈G
Qg[lnT

∗
n(X

n)],

where the last equality follows from the fact that T ∗
n from (8) only depends on Xn through

the invariant Mn =mn(X
n) and consequently its distribution is independent of g ∈G. Thus,

(8) shows that the minimum KL of the right hand side of (9) is achieved for the particular
choice of two uniform priors on G. Consequently, T ∗

n , defined in (8), is a GROW e-statistic,
that is,

(10) min
g∈G

Qg[lnT
∗
n(X

n)] = max
Tn e-stat.

min
g∈G

Qg[lnTn(X
n)].

We now turn to the challenges encountered when dealing with more complicated groups.



E-STATISTICS, GROUP INVARIANCE AND ANYTIME VALID TESTING 9

2.2. Noncompact groups. As we will see, a similar reasoning to that of the previous
section can be carried out for compact groups. In this section we show the difficulties that
we run into when considering noncompact groups, and how we circumvent them under the
assumption that the group G is amenable. Anytime that G is a locally compact topological
group, there exist left and right invariant measures λ and ρ, respectively, on G (see Bourbaki,
2004, VII, §1,no 2). This means that, for any g ∈ G and any B ⊆G measurable, λ{gB} =
λ{B} and ρ{Bg}= ρ{B}. We refer to them as left and right Haar measures; they will take
the place that the uniform distribution took on finite groups. For simplicity of exposition,
let us assume that both probabilistic models are dominated by a left invariant measure ν
on X . In that case, the invariance assumption (1) implies that the densities w.r.t. ν take the
form pg(X

n) = p1(g
−1Xn) and qg(X

n) = q1(g
−1Xn), where 1 makes reference to the unit

element of the group G. The theorem of Wijsman (Andersson, 1982) implies that, in analogy
to (8), under regularity assumptions, the likelihood ratio for the maximal invariant Mn =
mn(X

n) can be computed by integration over the group G, that is,

(11) T ∗
n(X

n) =
qMn(mn(X

n))

pMn(mn(Xn))
=

∫

G qg(X
n)dρ(g)

∫

G pg(Xn)dρ(g)
.

If the right Haar measure ρ can be chosen to be a probability measure, we can carry out the
analogous computations to those made in the finite case of Section 2.1 to conclude that T ∗

n is
indeed GROW. However, it can be shown that the right Haar measure ρ is finite if and only if
the group G at hand is compact (see Reiter and Stegeman, 2000, Proposition 3.3.5). This is a
severe limitation; it would not even cover our guiding example, the t-test (see Example 1.1),
because the group (R+, · ) is not compact. The main technical contribution of this article
is the extension of this result to noncompact amenable groups, defined next, for which there
exist almost right invariant probability measures.

DEFINITION 2.1 (Amenability). A group G is amenable if there exists a sequence of
almost right-invariant probability distributions, that is, a sequence Π1,Π2, . . . such that, for
any measurable set B ⊆G and g ∈G,

(12) lim
k→∞

|Πk {B}−Πk {Bg}|= 0.

Amenable groups have been thoroughly studied (Paterson, 2000) and include, among oth-
ers, all finite, compact, commutative, and solvable groups. An example of a nonamenable
group is the free group in two elements and any group containing it. A prominent example of
a nonamenable group is that of invertible d× d matrices with matrix multiplication. Under
the amenability of G and our assumptions, we will show that, for the almost right-invariant
sequence of probability distributions on G,

(13) lim
k→∞

KL(Πg
kQg,Π

g
kPg) = KL(QMn ,PMn) = min

g∈G
Qg[lnT

∗
n(X

n)],

where the last equality follows from the fact that T ∗
n(X

n) depends on Xn only through the
maximal invariant Mn and, consequently, its distribution does not depend on g. From this,
via Theorem 1 of Grünwald, de Heide and Koolen (2020), the analogue of (10) holds and,
consequently, as in the finite case of Section 2.1, T ∗ from (11) is GROW.

EXAMPLE 1.1 (continued). The group G = (R+, ·) of the t-test setting is clearly
amenable. The right Haar measure ρ is given by ρ(σ) = 1/σ, and the rightmost expression of
(11) becomes, with X̄ := n−1

∑n
i=1Xi,

(14) T ∗
n(X

n) =

∫

σ>0
1
σ exp

(

−n
2

[(
X̄σ− δ1

)2
+
[
n−1

∑
n
i=1

(Xi−X̄)2

σ2

)])

dσ

∫

σ>0
1
σ exp

(

−n
2

[(
X̄σ− δ0

)2
+
[
n−1

∑
n
i=1

(Xi−X̄)2

σ2

)])

dσ
.
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The expression (14) goes back to Cox (1952) who realized that it was equivalent to the
likelihood ratio of the maximal invariant. Lai (1976) already used it in an anytime-valid
context (essentially exploiting that it gives an e-statistic). Our results establish, for the first
time, that (14) is also GROW and relatively GROW. Lai also considered putting a proper prior
distribution on δ1; the same is done in Jeffreys’ Bayesian t-test (Jeffreys, 1961; Rouder et al.,
2009). We return to this idea in Section 8.

Consider now the sufficient statistic sn(X
n) = (µ̂n, σ̂n), where µ̂n is the maximum

likelihood estimator for the mean µ; and σ̂n, for the standard deviation σ. The t-statistic
MS,n =mS,n(Xn)∝ µ̂n/σ̂n is a maximally invariant function of the sufficient statistic. Our
results imply that T ∗

n also equals the likelihood ratio for MS,n is also relatively GROW, and
that the test ξ = (ξn)n∈N given by ξn = 1{T ∗

n ≥ 1/α} satisfies the conclusions of Proposi-
tion 1.3.

3. Assumptions. In this section we describe the assumptions made in our main results,
their part in the proofs, and discuss their role for the purpose of parametric inference. We
gather all assumptions below, in Assumption 1, for ease of reference. We start by laying out
the assumptions on the spaces involved, followed by those on the probabilistic models under
scrutiny. Our additional assumptions on the group G, the parameter space Θ and the obser-
vation space X are topological in nature. They have two purposes. The first, in relation to the
discussion of Section 2, is to ensure that the representation theorem of Wijsman (Andersson,
1982) holds. The second purpose of our assumptions is to ensure that the observation space
X n can be put in bijective and bimeasurable1 correspondence with a subset of G× X n/G,
where the group G acts naturally by multiplication on the first component. To this end, a the-
orem of Bondar (1976) is instrumental (see Remark 3.2). We assume that G is a topological
group, that is, a group equipped with a topology whose operation is continuous. We assume
that all topological spaces under consideration are equipped with their Borel σ-algebra, the
one generated by their topology. As topological spaces, we assume that both G and X are
separable, completely metrizable, and locally compact. We assume that the action of G on
X n is continuous and proper; the latter means that the map G×X n →X n ×X n defined by

(g,xn) 7→ (gxn, xn)

is proper, that is, the inverse of compact sets is compact. Properness ensures that the induced
topology on the orbits X n/G is Hausdorff, locally compact, and σ-finite (see Andersson,
1982). We further assume that both probabilistic models are dominated by a common rela-
tively left-invariant measure µ on X n with some multiplier χ, that is, a measure µ such that,
for any measurable set B ⊆X n and any group element g ∈G, satisfies µ{gB}= χ(g)µ{B}.
We gather these assumptions for ease of reference.

ASSUMPTION 1. Let G be a topological group acting on X n, a topological space. The
group G, the observation space X n, and the probabilistic models under consideration satisfy
the following properties:

1. As topological spaces,G and X n are separable, complete, metrizable and locally compact.
2. The action of G on X n is free, continuous and proper.
3. The models {Pg}g∈G and {Qg}g∈G are invariant and have densities with respect to a

common measure µ on X n that is relatively left-invariant with some multiplier χ.

1We call an invertible map bimeasurable if both the map and its inverse are measurable.
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REMARK 3.1. Assumption 1 holds in most cases of interest for the purpose of parametric
inference. We summarize some situations in which Assumption 1 holds which will be helpful
in Section 7, where we apply our results in two examples. Let X =R

d and identify X n with
set of d× n matrices. The properness of the following two actions on X n are consequences
of the more general results of Wijsman (1985).

1. The linear group in d dimensions GL(d), consisting of all d× d invertible real matrices
with multiplication, acts continuously on X n by left matrix multiplication. The continuous
action of GL(d) on the restriction of X n to matrices of rank d is free and proper any time
that n≥ d. Seen as a subset of Rd×n, the restriction of other Lebesgue measure to X n is
relatively left invariant with multiplier χ(g) = |det(g)|n , for g ∈GL(d).

2. The affine linear group AL(d), all pairs (A,b) with A ∈ GL(d) and b ∈ R
d with group

operation (A,v)(B,u) = (AB,Au+ v), also acts continuously on X n. An action is given
by ((A,b),Xn) 7→ [Ax1+b, . . . ,Axn+b], where x1, . . . , xn are the columns of Xn ∈ X n,
and the square brackets make reference to the matrix with the given columns. This action
is proper on the restriction of X n to matrices of rank d any time that n≥ d+1. Seen as a
subset of Rd×n, the restriction of the Lebesgue measure to X n is relatively left invariant
with multiplier χ(g) = |det(A)|n for g = (A,v) ∈AL(d).

REMARK 3.2. We use in the proof of the main theorem that, under these assumptions,
the space X n can be put in 1-to-1 bimeasurable correspondence with a subset of G×X n/G,
where G acts naturally by multiplication in the first component. More explicitly, under as-
sumptions 1 and 2, Theorem 2 of Bondar (1976) guarantees the existence of a one-to-one
map r : X n →G×X n/G such that both r and its inverse are measurable, and, anytime that
xn 7→ (h(xn),m(xn)), then, for any g ∈G, the image of gxn under r is (gh(xn),m(xn)).

REMARK 3.3. In our proofs, it will be useful to use, without loss of generality, the fol-
lowing modification to item 3 in Assumption 1:

3’ The models {Pg}n∈N and {Qg}n∈N are invariant and have densities with respect to a
common measure ν on X n that is left-invariant.

The reason that there is no loss in generality is that from any left-invariant measure µ with
multiplier χ, a left-invariant measure ν can be constructed. Indeed, Bourbaki (2004, Chap. 7,
§2 Proposition 7) shows that for any multiplier χ there exists a function ϕ :X n →R with the
property that ϕ(gx) = χ(g)ϕ(x) for any x ∈ X and g ∈ G. With this function at hand, one
can define the measure dν(x) = dµ(x)/ϕ(x), which is left invariant. After multiplication by
ϕ, probability densities with respect to µ are readily transformed into probability densities
with respect to ν .

REMARK 3.4. On any locally compact group G there exists a left-invariant measure λ,
called left Haar measure. It can be shown that λ is relatively right invariant with a multiplier
∆, that is, for any measurable B ⊆G and g ∈G it holds that λh{Bg}=∆(g)λh{B} for any
g ∈G. This multiplier is called the (right) modulus of the group G. A computation shows that
the measure ρ defined by ρh{B}= λh{B−1} for each measurable B ⊆G, is right invariant,
in other words, ρ is a right Haar measure. In the following, we always refer to right and left
Haar measures that are related to each other by that identity. In our proofs we will use that
for any integrable function f defined on G, the identities ρh[f(h)] = λh[f(h)/∆(h)] and
λh[f(h−1)] = ρh[f(h)] hold (see Eaton, 1989, Section 1.3).
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4. Main Result. In this section, we state in full the main result of this article, Corol-
lary 4.3, a characterization of the GROW statistic for the statistical hypothesis testing prob-
lem (7). In Corollary 4.5 we will show that any GROW e-statistic is also relatively GROW
in our group-invariant setting. Our main result stems from an application of the main techni-
cal contribution of this article, Theorem 4.2, which shows that the infimum Kullback-Leibler
(KL) divergence between the elements of the convex hulls of the null and alternative hypothe-
ses is exactly equal to the KL divergence between the distributions of the maximal invariant
under both models. Theorem 4.2 will allow us to directly apply GHK’s Theorem 1, which
provides a general recipe constructing the GROW e-statistic in terms of the KL minimization
problem (or joint information projection in information theoretic terminology). For simplic-
ity and completeness we present here a special case of GHK’s Theorem 1 that will be used
in our group-invariant setting.

THEOREM 4.1 (Theorem 1 of Grünwald, de Heide and Koolen (2020), most general ver-
sion given in their Section 4.3). Let P = {Pθ}θ∈Θ0

and Q = {Qθ}θ∈Θ1
be two families

of probability distributions on X n that are dominated by a common measure. Suppose that
there exists a random variable Vn = v(Xn) such that

(15) inf
Π0,Π1

KL(Πθ1
1 Qθ1 ,Π

θ0
0 Pθ0) = min

Π0,Π1

KL(Πθ1
1 QVn

θ1
,Πθ0

0 PVn

θ0
)<∞,

where the minimum and the infimum are over all pairs of proper probability distributions on
Θ0 and Θ1. Assume further that there exists a pair of probability distributions Π⋆

0 and Π⋆
1

such that the previous minimum is achieved, that is,

(16) min
Π0,Π1

KL(Πθ1
1 QVn

θ1
,Πθ0

0 PVn

θ0
) = KL(Π⋆θ1

1 QVn

θ1
,Π⋆θ0

0 PVn

θ0
).

Then

(17) max
Tn e-stat.

inf
θ1∈Θ1

Qθ1 [lnTn(X
n)] = KL(Π⋆θ1

1 QVn

θ1
,Π⋆θ0

0 PVn

θ0
).

In that case, the maximum on the left hand side of the previous display is achieved by the
e-statistic T ∗

n given by

T ∗
n(X

n) :=
Π⋆θ1

1 [qVn

θ1
(vn(X

n))]

Π⋆θ0
0 [pVn

θ0
(vn(Xn))]

,

that is, T ∗
n is GROW for testing P against Q.

Once the connection between GROW e-statistics and KL divergence minimization is es-
tablished, our next step is Theorem 4.2. In this section, we only treat the case in which, after
the invariance-reduced data, both null and alternative hypothesis become simple so that the
minimum in (15) trivializes. Theorem 4.2 establishes that, under our assumptions, (15) does
indeed hold where Vn plays the role of the maximal invariant Mn and Θ0 =Θ1 =G refer to
the group. In Section 8 we investigate the case when this the hypotheses are still composite
after the invariance reduction. Theorem 4.2 below immediately implies that the likelihood
ratio for the maximal invariant is GROW; we delay its proof to Section 10.

THEOREM 4.2 (Main technical result). Let Mn = mn(X
n) be a maximally invariant

function of the data Xn under the action of the group G on X n. Under Assumption 1, assume
further that the group G is amenable as in Definition 2.1, and that there is ε > 0 such that

(18) Q1

[∣
∣
∣
∣
log

q1(X
n)

p1(Xn)

∣
∣
∣
∣

1+ε
]

,QMn

[∣
∣
∣
∣
log

qMn(Mn)

pMn(Mn)

∣
∣
∣
∣

1+ε
]

<∞,
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where the subindex in Q1 refers to the unit element of G, and QMn and PMn are the distri-
butions of Mn under any of the members of {Qg}g∈G and {Pg}g∈G, respectively. Then,

(19) inf
Π0,Π1

KL(Πg
1Qg,Π

g
0Pg) = KL(QMn ,PMn),

where the infimum is taken over all pairs (Π0,Π1) probability distributions on the group G.

From our previous discussion and with Theorem 4.2 at hand, the main result of this article
follows.

COROLLARY 4.3 (Main result). Under the assumptions of Theorem 4.2, a GROW e-
statistic T ∗ for (7) is given by

T ∗
n(X

n) =
qMn(mn(X

n))

pMn(mn(Xn))
,

the likelihood ratio for any maximally invariant statistic Mn =mn(X).

We end by showing that, in our group-invariant setting, any statistic that is GROW is also
relatively GROW, meaning that any e-statistic that maximizes (5) also maximizes (4). This
is not true in general (see Turner, Ly and Grünwald, 2021), and the result relies crucially on
the invariant structure of the models under consideration. We give the proof of the following
proposition at the end of the section.

PROPOSITION 4.4. Suppose that the models {Pg}g∈G and {Qg}g∈G satisfy item 3 of
Assumption 1 and suppose that, for each g ∈G, there exists h ∈G such that KL(Qg,Ph) is
finite. Then the map defined by

g 7→ sup
Tn e-stat.

Qg[lnTn(X
n)]

is constant. Consequently, any maximizer of (5) also maximizes (4), that is, an e-statistic is
relatively GROW if and only if it is also GROW for the hypothesis testing problem (7).

After inspecting that Proposition 4.4 indeed applies under the assumptions of Corol-
lary 4.3, we can conclude the following corollary, the main objective of this section.

COROLLARY 4.5. Not only is T ∗ from Corollary 4.3 GROW, it is also relatively GROW.

PROOF. It is only left to check that, under the assumptions of Corollary 4.3, Proposi-
tion 4.4 applies. This is indeed the case because, by the invariance of the model and Hölder’s
inequality

KL(Qg,Pg) = KL(Q1,P1)≤
(

Q1

[∣
∣
∣
∣
log

q1(X
n)

p1(Xn)

∣
∣
∣
∣

1+ε
]) 1

1+ε

,

which was assumed to be finite.

PROOF OF PROPOSITION 4.4. Let g be a fixed group element of G. Recall from Re-
mark 3.3 that we may assume that both models are dominated by a left invariant mea-
sure ν on X . By Theorem 1 of GHK (simplest instantiation in Section 2), any time that
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infh∈GKL(Qg,Ph)<∞, there exists a subprobability density p̄ on X n relative to the left-
invariant measure ν with two key properties: first, the function T ⋆

n(X
n) = qg(X

n)/p̄(Xn) is
an e-statistic; second, T ⋆

n achieves the supremum in (5). Moreover the theorem implies that

(20) sup
T e-stat.

Qg[lnTn(X
n)] =Qg

[

ln
qg(X

n)

p̄(Xn)

]

= inf
Π0

KL(Qg,Π
g′

0 Pg′),

where the infimum is over all distributions Π0 on G. We will show that for any g,h ∈G and
any prior Π on G, there exists a prior Π̃ such that

(21) KL(Qg,Π
g′

0 Pg′) = KL(Qh, Π̃
g′

Pg′).

From this our claim will follow: by symmetry, it implies that g 7→ supTn e-stat. Qg[lnTn(X
n)]

is constant over G because of its relation to the KL minimization in (20). Use the invariance
of ν to compute

KL(Qg,Π
g′

Pg′) =Qg

[

log
qg(X

n)

Πg′pg′(Xn)

]

= νx
n

[

qg(x
n) log

qg(x
n)

Πg′
pg′(xn)

]

= νx
n

[

qh(hg
−1xn) log

qh(hg
−1xn)

Πg′pg′(xn)

]

.

Next, define Π̃ as the probability distribution on G that assigns Π̃{B} = Π{gh−1B} for
any measurable set B ⊆ G. Then Πg′

pg′ = Π̃g′

pgh−1g′ . Plugging this back in the previous
display, we see

KL(Qg,Π
g′

Pg′) = νx
n

[

qh(hg
−1xn) log

qh(hg
−1xn)

Π̃g′pgh−1g′(xn)

]

= νx
n

[

qh(hg
−1xn) log

qh(hg
−1xn)

Π̃g′pg′(hg−1xn)

]

= νx
n

[

qh(x
n) log

qh(x
n)

Π̃g′pg′(xn)

]

=KL(Qh, Π̃
g′

Pg′),

where, in the second to last step, we use that ν is left-invariant. Hence, (21) follows and, by
our previous discussion, so does our claim.

5. Invariance and Sufficiency. The relationship between invariance and sufficiency has
been thoroughly investigated (Hall, Wijsman and Ghosh, 1965; Hall, Wijsman and Ghosh,
1995; Berk, 1972; Nogales and Oyola, 1996). Consider a G-invariant hypothesis testing
problem such that a sufficient statistic is available. If the action of G on the original data
space induces a free action on the sufficient statistic, there must be a maximally invariant
function of the sufficient statistic. With this structure in mind, the results presented thus far
suggest two approaches for solving the hypothesis testing problem. The first is to reduce
the data using the sufficient statistic, and to test the problem using the maximally invariant
function of the sufficient statistic. The second approach is to use the maximal invariant for
the original data. These two approaches yield two potentially different growth-optimal e-
statistics, and one question arises naturally: are both approaches equivalent? In this section
we show that this is indeed the case, under certain conditions.
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We now introduce the set up formally. At the end of this section we revisit our guiding
example, the t-test, and show how the results of this section apply to it. Let Θ be the parameter
space, and let δ = δ(θ) be a maximal invariant function of θ for the action of G on Θ. Let sn :
X n →Sn be a sufficient statistic for θ ∈Θ. Consider again the hypothesis testing problem in
the form presented in (2). Assume further that G acts freely and continuously on the image
space Sn of the sufficient statistic Sn = sn(X

n), and assume that sn is compatible with the
action of G in the sense that, for any Xn ∈ X n and any g ∈ G, the identity gsn(X

n) =
sn(gX

n) holds, where (g, s) 7→ gs makes reference to the action of G on Sn. Let MX ,n =
mX ,n(X

n) and MS,n =mS,n(Sn) be two maximally invariants for the actions of G on X n

and Sn, respectively. Because of their invariance, the distributions of MX ,n and MS,n depend
only on the maximally invariant parameter δ. Hall, Wijsman and Ghosh (1965, Section II.3)
proved that, under regularity conditions, if SX ,n = sX ,n(X

n) is sufficient for θ ∈ Θ, then
the statistic MS,n =mS,n(sn(Xn)) is sufficient for δ. In that case, we call MS,n invariantly
sufficient. Here we state the version of their result, attributed by Hall, Wijsman and Ghosh
(1965) to C. Stein, that suits best our purposes2.

THEOREM 5.1 (C. Stein). If there exists a Haar measure on the group G, the statistic
MS,n = mS,n(sn(Xn)) is invariantly sufficient, that is, it is sufficient for the maximally
invariant parameter δ.

With this theorem at hand, and the fact that KL does not decrease by the application of
sufficient transformations, we obtain the following theorem.

PROPOSITION 5.2. Let sn : X n → Sn be sufficient statistic for θ ∈ Θ. Assume that G
acts freely on Sn and that sn(gXn) = gsn(x

n) for all Xn ∈ X n and g ∈ G. Let mS,n be a
maximal invariant for the action of G on Sn, and let MS,n =mS,n(sn(Xn)). Then,

KL
(

P
MX,n

δ1
,P

MX,n

δ0

)

=KL
(

P
MS,n

δ1
,P

MS,n

δ0

)

.

PROOF. The function MS,n =mS,n(sn(Xn)) is invariant, and consequently its distribu-
tion only depends on the maximal invariant parameter δ. Since MX ,n is maximally invariant
for the action of G on X n, there is a function f such that MS,n = f(MX ,n). By Stein’s the-
orem, Theorem 5.1, MS,n is sufficient for δ. Consequently, f is a sufficient transformation.
Hence, from the invariance of the KL divergence under sufficient transformations, the result
follows.

Via the factorization theorem of Fisher and Neyman, the likelihood ratio for the maximal
invariant MX ,n coincides with that of the invariantly sufficient MS,n. As a consequence,
we obtain the answer to the motivating question of this section: performing an invariance
reduction on the original data and on the sufficient statistic are equivalent.

COROLLARY 5.3. Under the assumptions of Proposition 5.2,

T ∗
n(X

n) =
p
MX,n

δ1
(mX ,n(X

n))

p
MX,n

δ0
(mX ,n(Xn))

=
p
MS,n

δ1
(mS,n(Sn))

p
MS,n

δ0
(mS,n(Sn))

.

Hence, if assumptions of Corollary 4.3 also hold, the likelihood ratio for the invariantly
sufficient statistic MS,n is relatively GROW.

2The assumption that there exists an invariant measure on G implies what Hall, Wijsman and Ghosh (1965)
call Assumption A. (see Hall, Wijsman and Ghosh, 1965, discussion in p. 581)
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EXAMPLE 1.1 (continued). We have seen that a maximally invariant function of
the data is MX ,n = mX ,n(X

n) = (X1/ |X1| , . . . ,Xn/ |X1|) while the t-statistic MS,n =
mS,n(Xn) ∝ µ̂n/σ̂n is a maximally invariant function of the sufficient statistic sn(X

n) =
(µ̂n, σ̂n). Stein’s theorem (Theorem 5.1) shows that the t-statistic MS,n is sufficient for the
maximally invariant parameter δ = µ/σ. Corollary 5.3 shows that the likelihood ratio for the
t-statistic is relatively GROW.

6. Anytime-valid testing under group-invariance. The main objective of this section
is to prove Proposition 1.3, the main result of this article pertaining testing under optional
stopping and continuation. We now assume that the observations are made sequentially. At
the end of the section we describe the consequences to our main example, the t-test. We begin
by defining our working model for this scenario. Let X = (Xn)n∈N be a random process,
where each Xn is an observation that takes values on a space X . We consider the natural
filtration associated to the observation process X , that is, the filtration (Fn)n∈N where and
Fn is the sigma-algebra generated by Xn = (X1, . . . ,Xn). If Z = (Zn)n∈N is a random
process and (Tn)n∈N is a martingale adapted to the natural filtration associated to Zn, we say
that T is a Z-martingale. Similarly, we say that N is a Z-stopping time if N is a stopping
time with respect to the natural filtration associated to Z . Let (Mn)n∈N be a sequence where,
for each n, Mn =mn(X

n) is a maximal invariant function for the action of G on X n. If, at
each sample size n, the assumptions of Corollary 4.3 hold, we have shown that

(22) T ∗
n(X

n) =
qMn(mn(X

n))

pMn(mn(Xn))
,

the likelihood ratio for the maximal invariant Mn = mn(X
n), defines a sequence T ∗ =

(T ∗
n)n∈N of relatively GROW e-statistics for (7). With an eye towards proving Proposi-

tion 1.3, in the next proposition we show, following the ideas of Hall, Wijsman and Ghosh
(1965), that T ∗ = (T ∗

n)n∈N is a martingale.

PROPOSITION 6.1. If M = (Mn)n∈N is a sequence of maximal invariants Mn =
mn(X

n) for the action of G on X n, the process T ∗ = (T ∗
n)n∈N given by (22) is a nonnegative

M -martingale under any of the elements of the null hypothesis {Pg}g∈G.

PROOF. Let g ∈ G be arbitrary but fixed. We start by showing that T ∗
n equals the like-

lihood ratio for Mn = (M1, . . . ,Mn) between Pg and Qg. For each t > 1, the maxi-
mal invariant at n − 1, Mn−1 = mn−1(X

n−1) is invariant if seen as a function of Xn.
Hence, by the maximality of mn, Mn−1 can be written as a function of Mn. Repeat-
ing this reasoning n − 1 times yields that Mn contains all information about the value of
Mn−1 = (M1, . . . ,Mn−1), all the maximal invariants at previous times. Two consequences
fall from these observations. First, no additional information about T ∗

n is gained by know-
ing the value of Mn−1 = (M1, . . . ,Mn−1) with respect to only knowing Mn−1, that is,
Pg [T

∗
n |Mn−1] = Pg

[
T ∗
n |Mn−1

]
. Second, the likelihood ratio between Pg and Qg for the

sequence M1, . . . ,Mn equals the likelihood ratio for Mn alone, that is,

T ∗
n(X

n) =
qM1,...,Mn(m1(X

1), . . . ,mn(X
n))

pM1,...,Mn(m1(X1), . . . ,mn(Xn))
.

The previous two consequences, and a computation, together imply that T ∗ is an M -
martingale under Pg , that is, Pg

[
T ∗
n |Mn−1

]
= T ∗

n−1. Since g ∈ G was arbitrary, the result
follows.
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With this result at hand, we are in the position to prove Proposition 1.3 from Section 1.3,
the main result in this work pertaining to sequential testing. We end this section with the
implications to the t-test.

PROOF OF PROPOSITION 1.3. From Proposition 6.1, we know that T ∗ = (Tn)n∈N is a
nonnegative martingale with expected value equal to one. Let ξ = (ξn)n be the sequential
test given by ξn = 1{T ∗

n ≥ 1/α}. The anytime validity at level α of ξ, is a consequence of
Ville’s inequality, and the fact that the distribution of each T ∗

n does not depend on g. Indeed,
these two, together, imply that

sup
g∈G

Pg{T ∗
n ≥ 1/α for some n ∈N} ≤ α.

Now, let N ≤∞ be an M -stopping time. If the stopping time N is almost surely bounded,
T ∗
N is an e-statistic by virtue of the optional stopping theorem. However, since T ∗ is a nonneg-

ative martingale, Doob’s martingale convergence theorem implies the existence of an almost
sure limit T ∗

∞. Even when N might be infinite with positive probability, Theorem 4.8.4 of
Durrett (2019) implies that T ∗

N is still an e-statistic.

EXAMPLE 1.1 (continued). In the previous section we saw that T ∗
n , the likelihood ratio

for the t-statistic is a GROW e-statistic. This, in conjunction with Proposition 1.3 implies that
the test ξ = (ξn)n∈N defined by ξn = 1{T ∗

n ≥ 1/α} is anytime valid at level α and that the
randomly stopped e-statistic T ∗

N remain one as long as the stopping time N is with respect to
the sequence of maximally invariant statistics. In Appendix B we show a situation where the
optionally stopped e-statistic is not an e-statistic if we take a stopping time that depends on
the full data.

7. Testing multivariate normal distributions under group invariance. We show how
the theory developed in the previous sections can be applied to hypothesis testing under nor-
mality assumptions. The family of d-dimensional normal distributions carries a natural in-
variance under scale-location transformations. The group of interest is the affine linear group
AL(d), the group consisting of all pairs (v,A) with v ∈R

d, and A an invertible d× d matrix,
and group operation (v,A)(u,B) = (v +Au,AB). By considering amenable subgroups of
AL(d), we obtain useful examples to which our results apply. We develop two in detail. The
first is an alternative to Hotelling’s T 2 for testing whether the mean of the distribution is
identically zero, and results from the consideration A ∈ LT+(d), the group of lower triangu-
lar matrices with positive entries on the diagonal, and v = 0. This test is in direct relation with
the step-down procedure of Roy and Bargmann (1958)3 (see also Subbaiah and Mudholkar,
1978). The second example that we consider is, in the setting of linear regression, a test for
whether or not a specific regression coefficient is identically zero. It results from the restric-
tion A= cI , a multiple of the d× d identity matrix.

7.1. The lower triangular group. Consider data Xn = (X1, . . . ,Xn) where Xi ∈ X =
R
d. We assume each Xi to have a Gaussian distribution N(µ,Σ) with unknown mean µ ∈R

d

and covariance matrix Σ. We consider a test for whether the mean µ of the distribution is zero.
Before stating explicitly our hypothesis testing problem, we first reparametrize the Gaussian
model using Cholesky’s decomposition. Indeed, for a positive definite matrix Σ, its Cholesky

3Even though not explicitly in group-theoretic terms, the test of Roy and Bargmann (1958) test is based on a
different maximally invariant function of the data. The fact that the test statistic of Roy and Bargmann (1958) is
maximally invariant under the action of LT+(d) is shown by Subbaiah and Mudholkar (1978)
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decomposition is Σ= ΛΛ′ for a unique Λ ∈ LT+(d). Consequently, LT+(d) can be used to
parametrize all covariance matrices. Hence, we may take the parameter space Θ to be Θ =
R
d×LT+(d). In this parametrization, the likelihood of the original data Xn = (X1, . . . ,Xn)

takes the form

pX
n

Λ,δ(X
n) =

1

(2π)n(detΛ)n
exp

(

−1

2

n∑

i=1

∥
∥Λ−1Xi − δ

∥
∥
2

)

.

Consider the hypothesis testing problem,

H0 : Λ
−1µ= δ0 vs. H1 : Λ

−1µ= δ1,

from which a test for whether µ is zero can be obtained by setting δ0 = 0. We now apply our
results to this testing problem. Recall that the group LT+(d) is amenable and acts on Θ by

(L, (µ,Λ)) 7→ (Lµ,LΛ)(23)

for each (µ,Λ) ∈Θ and L ∈ LT+(d), and a maximally invariant parameter is δ =Λ−1µ. The
group LT+(d) acts on X n by componentwise matrix multiplication, and the Gaussian model
is invariant under this action. With the help of Remark 3.1, the assumptions of Corollary 4.3
are readily checked anytime that n ≥ d, and we can conclude that, for any maximally in-
variant function MX ,n =mX ,n(X

n) of the data, the likelihood ratio T ∗
n = p

MX,n

δ1
/p

MX,n

δ0
is

GROW. However, from our discussion in Section 5, this likelihood ratio coincides with that
of a invariantly sufficient statistic for δ. We now proceed to compute one such a statistic.
Recall that the pair Sn = sn(X

n) = (X̄n, V̄n), consisting of the unbiased estimators X̄n for
the mean and the covariance matrix V̄n is a sufficient statistic for (µ,Σ). We can apply to the
sufficient statistic the same considerations that we applied to the parameter space. For n≥ d,
we can perform the Cholesky decomposition of the empirical covariance matrix V̄n =LnL

′
n.

The statistic MS,n =mS,n(Sn) =
√

n
n−1L

−1
n Ȳn is maximally invariant under the action (23),

and, by our discussion from Section 5, invariantly sufficient. In other words, MS,n is suffi-

cient for δ. Hence, the GROW e-statistic can be written as T ∗
n = p

MS,n

δ1
/p

MS,n

δ0
. For the pur-

poses of sequential testing, Proposition 1.3 shows that the sequential test (ξ∗n,α : n ∈N) with
ξ∗n,α = 1{T ∗

n ≥ 1/α} is anytime valid. For completeness, we give an explicit expression for
the likelihood ratio T ∗

S,n when δ0 = 0. From this expression, the likelihood ratio for other
values of δ0 can be computed. We show the computations in Proposition A.1.

LEMMA 7.1. For the maximally invariant statistic MS,n =
√

n
n−1L

−1
n Ȳn, we have

(24)
p
MS,n

δ (MS,n)

p
MS,n

0 (MS,n)
= e−

n

2
‖δ‖2

PT
n,I

[

en〈δ,TA−1
n MS,n〉

]

,

where A is the lower triangular matrix resulting from the Cholesky decomposition I +
MS,nM ′

S,n =AnA
′
n, and PT

n,I is the distribution according to which nTT ′ ∼W (n, I).

PROOF. Use Proposition A.1 with γ =
√
nδ, X =

√
nX̄ , m= n− 1, and S = V̄ .

7.2. A subset of the affine group AL(d): linear regression. Consider the problem of test-
ing whether one of the coefficients of a linear regression is zero under Gaussian error assump-
tions. Assume that the observations are of the form (X1, Y1,Z1), . . . , (Xn, Yn,Zn), where, for
each i, Xi, Yi ∈R and Zi ∈R

d. We consider the the linear model given by

Yi = γXi + β′Zi + σεi,
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where γ ∈ R, β ∈ R
d and σ ∈ R

+ are the parameters, and ε1, . . . , εn are i.i.d. errors with
standard Gaussian distribution N(0,1). We are interested in testing

(25) H0 : γ/σ = δ0 vs. H1 : γ/σ = δ1.

A test for whether γ = 0 is readily obtained by taking δ0 = 0. This problem is invariant under
the action of the subgroup G of AL(d) that results from the restriction to the pairs (A,v)
where A = cI , a multiple of the d × d identity matrix, and v ∈ R

d (Kariya, 1980; Eaton,
1989). This group is amenable. On the observation space, G acts by ((cI, v), (X,Y,Z)) 7→
(X,cY + v′Z,Z); on the parameter space, by ((cI, v), (γ,β,σ)) 7→ (cγ, cβ + v, cσ). A max-
imal invariant parameter is δ = γ/σ. With this parametrization, the conditional density of Y
becomes

pδ,β,σ(Y |X,Z) =
1

(2πσ2)1/2
exp

(

− 1

2σ2
(Y − β′Z − σδX)2

)

.

Define the vectors Yn = (Y1, . . . , Yn)
′ and Xn = (X1, . . . ,Xn)

′, and the n× d matrix Zn =
[Z1, . . . ,Zn]

′ whose rows are the vectors Z1, . . . ,Zn. Assume that Z has full rank. A maximal

invariant function of the data is given by Mn =
(

An′
Yn

‖An′Yn‖ ,Xn,Zn

)

, where An is a (n−d)×n

matrix whose columns form an orthonormal basis for the orthogonal complement of the col-
umn space of Zn. It follows that An′An = In−d and AnAn′ = In−Zn(Zn′Zn)−1Zn′, where
and In is the n× n identity matrix (Kariya, 1980; Bhowmik, 2013). In order to compute the
likelihood of the maximal invariant statistic Mn, we assume that the mechanism that gener-
ates Xn and Zn is the same under both hypotheses. It only remains to compute the distribu-
tion of Un = An′Yn

‖An′Yn‖ conditionally on Xn and Zn. Bhowmik (2013) shows that for arbitrary
effect size δ, the density of this distribution is given by

pUn

δ (u|Xn,Z
n) =

1

2
Γ

(
k

2

)

π− k

2 ec(δ)
[

1F1

(
k

2
,
1

2
,
a2(u, δ)

2

)

+
√
2a(u, δ)

Γ((1 + k)/2)

Γ(k/2)
1F1

(
1 + k

2
,
3

2
,
a2(u, δ)

2

)]

,

where k = n− d, u is a unit vector in R
k , a (u, δ) = δX ′

nA
nu, c (δ) =−1

2δ
2
X

′
nA

nAn′
Xn,

and 1F1 is the confluent hypergeometric function. This can be used to compute the relatively
GROW e-statistic in Theorem 4.2 for (25).

8. Composite invariant hypotheses. Until now we have considered null and alternative
hypotheses that become simple when viewed through the lens of the maximally invariant
statistic. As we saw, in the t-test this corresponds to testing simple hypotheses about the effect
size δ. However, there are situations where it is desirable to contemplate hypotheses that are
composite in the maximally invariant parameter. An example of such a situation is found in
Hotelling’s T 2 test (see Section 9). We also consider problems in which a fixed prior is placed
on the maximally invariant parameter δ, in Corollary 8.3, thereby implementing the method
of mixtures, a standard method to combine test martingales going back as far as Wald (1945)
and Darling and Robbins (1968). It was already used in the context of our t-test example by
Lai (1976).

Consider, as in the previous section, Θ to be the parameter space on which G acts freely
and continuously. Let δ be a maximally invariant parameter. Suppose that the parameter space
Θ can be decomposed as Θ∼=G×Θ/G. Consider the testing problem

(26) H0 :X
n ∼Pg,δ, δ ∈∆0, g ∈G vs. H1 :X

n ∼Qg,δ, δ ∈∆1, g ∈G,
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where ∆0,∆1 are two sets of possible values of the maximally invariant parameter δ = δ(θ).
Recall that the distribution of a maximally invariant function of the data Mn = mn(X

n)
depends on the parameter θ only through δ. Consequently, the alternatives in the previous
hypothesis testing problem are not simple when data are reduced through invariance. The
main objective of this section is to show that searching for a GROW e-statistic for (26) is
equivalent to searching one for invariance-reduced problem

(27) H0 :Mn ∼PMn

δ , δ ∈∆0 vs. H1 :Mn ∼QMn

δ , δ ∈∆1.

We follow the same steps that we followed in Section 4, and begin by showing that if there
exists a minimizer for the KL minimization problem associated to (27), then it has the same
value as that associated to (26).

PROPOSITION 8.1. Assume that there exists a pair of probability distributions Π⋆
0,Π

⋆
1

on ∆0 and ∆1 that satisfy

(28) KL(Π⋆δ
1 QMn

δ ,Π⋆δ
0 PMn

δ ) = min
Π0,Π1

KL(Πδ
1Q

Mn

δ ,Πδ
0P

Mn

δ ).

For each g ∈ G, define the probability distributions P⋆
g =Π⋆δ

0 Pg,δ and Qg =Π⋆δ
1 Qg,δ on

X n. If the models {P⋆
g}g∈G and {Q⋆

g}g∈G satisfy the assumptions of Theorem 4.2, then

inf
Π0,Π1

KL(Πg,δ
1 Qg,δ,Π

g,δ
0 Pg,δ) = min

Π0,Π1

KL(Πδ
1Q

Mn

δ ,Πδ
1P

Mn

δ ).

PROOF. Let Πg,δ
0 ,Πg,δ

1 be two probability distributions on G×∆0 and G×∆1, respec-
tively. If we call Πδ

0 and Πδ
1 their respective marginals on ∆0 and ∆1, then, the information

processing inequality implies that

KL(Πg,δ
1 Qg,δ,Π

g,δ
0 Pg,δ)≥KL(Πδ

1Q
Mn

δ ,Πδ
0P

Mn

δ )≥KL(Π⋆δ
1 QMn

δ ,Π⋆δ
0 PMn

δ ).

This means that the right-most member of the previous display is a lower bound on our target
infimum, that is,

(29) inf
Π0,Π1

KL(Πg,δ
1 Qg,δΠ

g,δ
0 Pg,δ)≥KL(Π⋆δ

1 QMn

δ ,Π⋆δ
0 PMn

δ ).

To show that this is indeed an inequality, it suffices to prove that it is indeed the case if we
limit ourselves to taking the infimum over a subset of all possible probability distributions
Π0,Π1. We proceed to build such a subset. Let P(Π⋆δ

0 ) be the set of probability distribu-
tions on G×∆0 with marginal distribution Π⋆δ

0 . Define analogously the set of probability
distributions P(Π⋆δ

1 ) on G×∆1. By our assumptions, Theorem 4.2 can be readily used to
conclude that

(30) inf
(Π0,Π1)∈P(Π⋆δ

0 )×P(Π⋆δ
1 )

KL(Πg,δ
1 Qg,δ,Π

g,δ
0 Pg,δ) = KL(Π⋆δ

1 QMn

δ ,Π⋆δ
0 PMn

δ )

holds; (29) and (30) together imply the result that we were after.

From the previous proposition, using Theorem 4.1 and the steps used for Corollaries 4.3
and 4.5, we can conclude that the ratio of the Bayes marginals for the invariance-reduced
data Mn using the optimal priors Π⋆

0 and Π⋆
1 is a relatively GROW e-statistic for (26).

COROLLARY 8.2. Under the assumptions of Proposition 8.1, the statistic given by

T ⋆(Xn) =
Π⋆δ

1 [qδ(mn(X
n))]

Π⋆δ
0 [pδ(mn(Xn))]

is a GROW and relatively GROW e-statistic for (26).
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A standard approach to deal with unknown parameter values, both with Bayesian statistics
and with e-statistics, is to employ proper prior distributions on the unknown parameters. In
our setting, we may want to use specific priors Π̃0 and Π̃1 on ∆0 and ∆1. If we define
for each g the probability distributions P̃g = Π̃δ

0Pg,δ and Q̃g = Π̃δ
1Qg,δ, and the resulting

models {P̃g}g∈G and {Q̃g}g∈G also satisfy the conditions of Corollary 4.3, the proof of
Proposition 8.1 also shows the following corollary.

COROLLARY 8.3. Let Π̃0 and Π̃1 be two probability distributions on ∆0 and ∆1, re-
spectively. Let {P̃g}g∈G and {Q̃g}g∈G be two probability models defined by P̃g = Π̃δ

0Pg,δ

and Q̃g = Π̃δ
1Qg,δ. If {P̃g}g∈G and {Q̃g}g∈G satisfy the conditions of Corollary 4.3 (or

more precisely, the conditions of Theorem 4.2 with P̃g in the role of Pg and Q̃g in the role of
Qg), then

T̃n(X
n) =

Π̃δ
1[qδ(mn(X

n))]

Π̃δ
0[pδ(mn(Xn))]

is a relatively GROW e-statistic for testing {P̃g}g∈G against {Q̃g}g∈G.

9. Discussion, Related and Future Work. In this concluding section we bring up an
issue that deserves further discussion and may inspire future work. It also highlights the dif-
ferences between our work and related work in a Bayesian and information-theoretic context.

9.1. Amenability is not always necessary. We have shown that if a hypothesis testing
problem is invariant under a group G and our assumptions are satisfied, then amenability of
G is a sufficient condition for the likelihood ratio of the maximal invariant to be GROW. A
natural question is whether amenability is also a necessary condition for the latter to hold.
This is a relevant question, because there are some groups that are important for statistical
practice, but are not amenable. For instance, GL(d) is the relevant group in Hotelling’s test.
The setup of this test is similar to that in Section 7.1, except that the hypotheses are given by

(31) H0 : ‖Λ−1µ‖2 = 0 vs. H1 : ‖Λ−1µ‖2 = γ.

A maximal invariant is the T 2-statistic nȲ ′
nV̄

−1
n Ȳn. Notice that this test is equivalent to the

lower triangular test with the alternative expanded to ∆= {δ : ‖δ‖2 = γ}, but that T 2 is not a
maximal invariant under the lower triangular group. However, Giri, Kiefer and Stein (1963)
have shown that for d = 2 and n = 3, the likelihood ratio of the T 2-statistic can be written
as an integral over the likelihood ratio in (24) with a proper prior on δ ∈∆ as defined there.
It follows as a result of Proposition 8.1 that the likelihood ratio of the T 2-statistics is also
GROW in the case that d= 2 and n= 3. These results can be extended to the case that d= 2
with arbitrary n by the work of Shalaevskii (1971). As future work, it may be interesting to
investigate whether amenity can be more generally replaced by a weaker condition, and/or
whether a counterexample to Theorem 4.2 for non-amenable groups can be given.

9.2. Comparison of our work to Sun and Berger (2007) and Liang and Barron (2004):
two families vs. one. As the above example illustrates, it is sometimes possible to repre-
sent the same H0 and H1 via (at least) two different groups, say Ga and Gb. Group Ga is
combined with parameter of interest in some space ∆a and priors Π∗δa

j on ∆a achieving
(28) relative to group Ga, for j = 0,1; group Gb has parameter of interest in ∆b and priors
Π∗δb

j achieving (28) relative to group Gb; yet the tuples Ta = (Ga,∆a,{Π∗δa
j }j=0,1) and

Tb = (Gb,∆b,{Π∗δb
j }j=0,1) define the same hypotheses H0 and H1. That is, the set of dis-

tributions {P∗
g}g∈Ga

obtained by applying Proposition 8.1) with group Ga (representing H0
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defined relative to group Ga) coincides with the set of distributions {P∗
g}g∈Gb

obtained by
applying Proposition 8.1) with group Gb (representing H0 defined relative to group Ga); and
analogously for the set of distributions {P∗

g}g∈Ga
and the set of distributions {P∗

g}g∈Gb
. (in

the example above, Ga was GL(d) and the priors Π∗δa
0 ,Π∗δa

1 were degenerate priors on 0 and
γ as in (31), respectively; Gb was the lower triangular group with a specific prior as indicated
above). In such a case with multiple representations of the same H0 and H1, using the fact
that the notion of ‘GROW’ does not refer to the underlying group, Corollary 8.2 can be used
to identify the GROW e-statistic as soon as the assumptions of Proposition 8.1 hold for at least
one of the tuples Ta or Tb. Namely, if the assumptions hold for just one of the two tuples, we
use Corollary 8.2 with that tuple; then T ∗(Xn) as defined in the corollary must be GROW,
irrespective of whether T ∗(Xn) based on the other tuple is the same (as it was in the exam-
ple above) or different. If the assumptions hold for both groups, then, using the fact that the
GROW e-statistic is ‘essentially’ unique (see Theorem 1 of Grünwald, de Heide and Koolen
(2020) for definition and proof), it follows that T ∗(Xn) as defined in Corollary 8.2 must
coincide for both tuples.

Superficially, this may seem to contradict Sun and Berger (2007) who point out that in
some settings, the right Haar prior is not uniquely defined, and different choices for right
Haar prior give different posteriors, which are theire main object of interest. To resolve the
paradox, note that, whereas we always formulate two models H0 and H1, Sun and Berger
(2007) start with a single probabilistic model, say P , that can be written as in (1) for two
different groups G and G′. Their example shows that it is not always clear what group, and
hence what Haar prior to pick, and their quantity of interest — the Bayesian posterior, i.e. a
ratio between Bayes marginals for the same model P at different sample sizes n and n−1 —
can depend on the choice. In contrast, our quantity of interest, the GROW e-statistic T ∗(Xn),
a ratio between Bayes marginals for different models H0 and H1 at the same sample size,
is uniquely defined as soon as there exists one group G with H0 and H1 as in (2) for which
the assumptions of Theorem 4.2 hold; or more generally, as soon as there exists one tuple
T = (G,∆,{Π∗δ

j }j=0,1) for which the assumptions of Proposition 8.1 hold, even if there
exist other such tuples.

The consideration of two families H0 and H1 vs. a single P is also one of the main
differences between our setting and the one of Liang and Barron (2004), who provide ex-
act minimax procedures for predictive density estimation for general location- and scale-
families under Kullback-Leibler loss. Their results apply to any invariant probabilistic model
P as in (1) where the invariance is with respect to location or scale (and more gener-
ally, with respect to some other groups including the subset of the affine group that we
consider in Section 7.2). Consider then such a P and let pMn(mn(X

n)) be as in (11).
As is well-known, provided that n′ is larger than some minimum value, for all n > n′,
r(Xn′+1, . . . ,Xn | X1, . . . ,Xn′) := pMn(mn(X

n))/pMn′ (mn′(Xn′

)) defines a conditional
probability density for Xn′+1, . . . ,Xn; this is a consequence of the formal-Bayes posterior
corresponding to the right Haar prior becoming proper after n′ observations, a.s. under all
P ∈ P . For example, in the t-test setting, n′ = 1. Liang and Barron (2004) show that the
distribution corresponding to r minimizes the Pn′

- expected KL divergence to the condi-
tional distribution Pn | Xn′

, in the worst case over all P ∈ P . Even though their optimal
density r is defined in terms of the same quantities as our optimal statistic T ∗

n , it is, just as in
(Berger and Sun, 2008) considered above, a ratio between likelihoods for the same model at
different sample sizes, rather than, as in our setting, between likelihoods for different mod-
els, both composite, at the same sample sizes. Our setting requires a joint KL minimiza-
tion over two families, and therefore our proof techniques turn out quite different from their
information- and decision-theoretic ones.
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10. Proof of the main theorem, Theorem 4.2. For the proof of the main result, we
use an equivalent definition of amenability to the one that was already anticipated in Sec-
tion 2.2. We take the one that suits our purposes best (see Bondar and Milnes, 1981, p. 109,
Condition A1).

ASSUMPTION 2 (Amenability of G). There exists a increasing sequence of symmetric
compact subsets C1 ⊆C2, · · · ⊂G such that, for any compact set K ⊆G,

ρh{h ∈Ci}
ρh{h ∈CiK} → 1

as i→∞.

In this formulation, amenability is the existence of almost invariant symmetric compact
subsets of the group G. We use these sets to to build a sequence of almost invariant proba-
bility measures when G is noncompact.

PROOF OF THEOREM 4.2. Under our assumptions, Theorem 2 of Bondar (1976) im-
plies the existence of a bimeasurable one-to-one map X n →G×X n/G such that r(xn) =
(h(xn),m(xn)) and r(gxn) = (gh(xn),m(xn)) for h(xn) ∈G and m(xn) ∈X n/G (see Re-
mark 3.2). Hence, by a change of variables, we can assume that the densities are with respect
to the image measure µ under r on G × X n/G. Call the random variables M = m(Xn)
and H = h(Xn). We can therefore assume, without loss of generality, that the data is of the
form (H,M), that the group G acts canonically by multiplication on the first component, and
that the measures are with respect to a G-invariant measure ν = λ× β where λ is the Haar
measure on G and β is some measure on X n/G (see Remark 3.3). For each g ∈ G, write
PH

m and QH
g,m for the conditional probabilities PH

g [ · |M =m] and QH
g [ · |M =m], which

can be obtained through disintegration (see Chang and Pollard, 1997), and write p( · |m) and
q( · |m) for their respective conditional densities with respect to the left Haar measure λ. For
simplicity, simply write P and Q instead of P1 and Q1, any time that 1 is the unit element
of the group.

We turn to our KL minimization objective. The chain rule for the KL divergence implies
that, for any probability distribution Π on G,

(32) KL(ΠgQg,Π
gPg) = KL(QM ,PM ) +Qm

[
KL(ΠgQH

g,m,ΠgPH
g,m)

]
,

where, recall, the superindex in Qm signals integration over m. In order to prove our claim,
we will build a sequence {Πi}i∈N of probability distributions on G such that the term in (32)
pertaining the conditional distributions given M goes to zero, that is, such that

(33) Qm
[
KL(Πg

iQ
H
g,m,Π

g
iP

H
g,m)

]
→ 0

as i → ∞. We define the distributions Πi as the normalized restriction of the right Haar
measure ρ to carefully chosen compact sets Ci ⊂G, that we describe in brief. In other words,
for B ⊆G measurable, we define Πi by

(34) Π
g
i {g ∈B}= ρg{g ∈B ∩Ci}

ρg{g ∈Ci}
,

Next, the choice of sets Ci. Pick Ci = JiKiLi according to the following lemma.

LEMMA 10.1. Under the amenability of G there exist sequences {Ji}i∈N, {Ki}i∈N and
{Li}i∈N of compact symmetric neighborhoods of the unity of G, each increasing to cover G,
such that

ρh{h ∈ Ji}
ρh{h ∈ JiKiLi}

→ 1

as i→∞.
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There is no risk of dividing by ∞ in (34): by the continuity of the group operation each Ci

is compact, hence ρ{Ci} <∞. Proposition 10.1 ensures that Πg
i {g ∈ Ji} → 1 as i→∞, a

fact that will be useful later in the proof. Write QH
i,m :=Π

g
iQ

H
g,m, and PH

i,m :=Π
g
iP

H
g,m, and

qi(h|m) and pi(h|m) for their respective densities. Write our quantity of interest from (33)
as

Qm
[
KL(Πg

iQ
H
g,m,Π

g
iP

H
g,m)

]
=

∫

q1(g
−1h,m) log

qi(h|m)

pi(h|m)
dλ(h)dΠi(g)dβ(m)

=

∫

q1(h,m) log
qi(gh|m)

pi(gh|m)
dλ(h)dΠi(g)dβ(m)

=Π
g
iQ

h,m

[

log
qi(gh|m)

pi(gh|m)

]

= Π
g
iQ

h,m

[

1{gh ∈ JiKi} log
qi(gh|m)

pi(gh|m)

]

︸ ︷︷ ︸

A

+

Π
g
iQ

h,m

[

1{gh /∈ JiKi} log
qi(gh|m)

pi(gh|m)

]

︸ ︷︷ ︸

B

.

(35)

We separate the rest of the proof in two steps, one for bounding each term in (35). These steps
use two technical lemmas whose proof we give after showing how they help at achieving our
goals.

Bound for A in (35): Notice that

log
qi(gh|m)

pi(gh|m)
= log

ρg
′

[1{JiKiLi} qg′(gh|m)]

ρg
′
[1{JiKiLi} pg′(gh|m)]

Use N = JiKi (which is not necessarily symmetric) and L=Li in the following

LEMMA 10.2. Let N and L be compact subsets of G. Assume that L is symmetric.
Then, for each m ∈M it holds that

sup
h∈N

log
ρg[1{NL} qg(h|m)]

ρg[1{NL} pg(h|m)]
≤− logPH

m{H ∈L}.

Conclude that for all gh ∈ JiKi and m ∈M

log
qi(gh|m)

pi(gh|m)
≤− logPh

m{h ∈Li}.

At the same time this implies that A in (35) is smaller than

−Qm
[

logPh
m{h ∈ Li}

]

.

Since the sets Li were chosen to satisfy Li ↑G, the probability Ph
m{h ∈ Li}→ 1 goes to

one for each value of m monotonically. Consequently the last display tends to 0 by the
monotone convergence theorem, and so does A in (35).

Bound for B in (35): Our strategy at this point is to show that, as i→∞,

(36) Π
g
iQ

h
1 {gh /∈ JiKi}→ 0,
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and to use (18) to show our goal, that B in (35) tends to zero. To show (36), notice that if
g ∈ Ji and h ∈Ki, then gh ∈ JiKi, which implies that

Π
g
iQ

h {gh ∈ JiKi} ≥Π
g
i {g ∈ Ji}Qh {h ∈Ki} .

Since Ki increases to cover G, we have Qh {h ∈Ki} → 1 as i →∞, and by our initial
choice of sets Ji,Ki,Li, the probability Π

g
i {g ∈ Ji} → 1, as i →∞. Hence (36) holds.

To bound the second term, we use the following lemma.

LEMMA 10.3. Let Πg be a distribution on G. Then for each h ∈ G and m ∈ M it
holds that

log

∫
qg(h|m)dΠ(g)

∫
pg(h|m)dΠ(g)

≤Π
g
h,m

[

log
qg(h|m)

pg(h|m)

]

.

where dΠg
h,m = qg(h|m)dΠ(g)∫

g
qg(h|m)dΠ(g)

Apply Hölder’s and Jensen’s inequality consecutively to bound B in (35) by

Π
g
iQ

h,m

[

1{gh /∈ JiKi}Πg′

i,h,m

[

log
qg′(gh|m)

pg′(gh|m)

]]

≤
(

Π
g
iQ

h {gh /∈ JiKi}
)1/q

(

Π
g
iQ

h,m

∣
∣
∣
∣
Π

g′

i,h,m

[

log
qg′(gh|m)

pg′(gh|m)

]∣
∣
∣
∣

p)1/p

≤
(

Π
g
iQ

h {gh /∈ JiKi}
)1/q

︸ ︷︷ ︸

→0 as i→∞ by (36)

(

Π
g
iQ

h,mΠ
g′

i,h,m

∣
∣
∣
∣
log

qg′(gh|m)

pg′(gh|m)

∣
∣
∣
∣

p)1/p

,(37)

where p= 1+ ε and q is p’s Hölder conjugate, that is, 1/p+1/q = 1. Next, we show that
the second factor in (37) remains bounded as i →∞. To this end, a change of variables
shows that said factor can be rewritten as

Π
g
iQ

h,mΠ
g′

i,h,m

[∣
∣
∣
∣
log

qg′(gh|m)

pg′(gh|m)

∣
∣
∣
∣

p]

=Π
g
iQ

h,m
g Π

g′

i,h,m

[∣
∣
∣
∣
log

qg′(h|m)

pg′(h|m)

∣
∣
∣
∣

p]

=Q
h,m
i Π

g′

i,h,m

[∣
∣
∣
∣
log

qg′(h|m)

pg′(h|m)

∣
∣
∣
∣

p]

=Π
g′

i Q
h,m
g′

[∣
∣
∣
∣
log

qg′(h|m)

pg′(h|m)

∣
∣
∣
∣

p]

=Qh,m

[∣
∣
∣
∣
log

q(h|m)

p(h|m)

∣
∣
∣
∣

p]

.

Hence, as
(

Qh,m

[∣
∣
∣
∣
log

q(h|m)

p(h|m)

∣
∣
∣
∣

p])1/p

≤

(

Qh,m

[∣
∣
∣
∣
log

q(h,m)

p(h,m)

∣
∣
∣
∣

p])1/p

+

(

Qm

[∣
∣
∣
∣
log

q(m)

p(m)

∣
∣
∣
∣

]p)1/p

<∞

by (18). We have shown that (37) tends to 0 as i → ∞ and that consequently B in (35)
tends to 0 in the same limit.

After completing these two steps, we have shown that both A and B in (35) tend to 0 as
i→∞, and that consequently the claim of the theorem follows. All is left is to prove lemmas
10.1, 10.2, and 10.3.
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10.1. Proof of technical lemmas 10.1, 10.2, and 10.3.

PROOF OF LEMMA 10.1. Let {εi}i be a sequence of positive numbers decreasing to zero.
Let {Ki}i∈N and {Li}i∈N be two arbitrary sequences of compact symmetric subsets that
increase to cover G. Fix i ∈ N. The set KiLi is compact and by our assumption there exists
a sequence {Jl}l∈N and such that ρ{Jl}/ρ{JlKiLi}→ 0 as l→∞. Pick l(i) to be such that
ρ{Jl(i)}/ρ{Jl(i)KiLi} ≥ 1− εi. The claim follows from a relabeling of the sequences.

PROOF OF LEMMA 10.2. Let h ∈N . Then we can write

ρg[1{g ∈NL} qg(h|m)] = ρg[1{g ∈NL} q(g−1h|m)]

= λg[1
{
g ∈ (NL)−1

}
q(gh|m)]

= ∆(h−1)λg[1
{
g ∈ (NL)−1h

}
q(g|m)]

= ∆(h−1)Qg
m{g ∈ (NL)−1h}

The same computation can be carried out for p, and consequently

log
ρg[1{g ∈NL} qg(h|m)]

ρg[1{g ∈NL} pg(h|m)]
= log

Q
g
m{g ∈ (NL)−1h}

P
g
m{g ∈ (NL)−1h}

≤ − logPh
m{h ∈ (NL)−1h}.

By our assumption that h ∈ N , we have that (NL)−1h = L−1N−1h ⊇ L−1 = L. This im-
plies that the last quantity of the previous display is smaller than − logPH

m{H ∈ L}. The
result follows.

PROOF OF LEMMA 10.3. The result follows from a rewriting and an application of
Jensen’s inequality. Indeed,

− log

∫
pg(h|m)dΠ(g)
∫
qg(h|m)dΠ(g)

=− log

∫
qg(h|m)pg(h|m)

qg(h|m)dΠ(g)
∫
qg(h|m)dΠ(g)

=− logΠg
h,m

[
pg(h|m)

qg′(h|m)

]

≤−Π
g
h,m

[

log
pg(h|m)

qg(h|m)

]

=Π
g
h,m

[

log
qg(h|m)

pg(h|m)

]

.
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is the probability distribution under which X ∼N(0, I), then, the likelihood pMγ,m/pM0,m ratio
is given by

pMγ,m(M)

pM0,m(M)
= e−

1

2
‖γ‖2

PT
m+1,I
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e〈γ,TA−1M〉
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where A ∈ L+ is the Cholesky factor AA′ = I +MM ′, and PT
m+1,I is the probability distri-

bution on L+ such that TT ′ ∼W (m+1, I).

PROOF. Let Σ = ΛΛ′ be the Cholesky decomposition of Σ. The density pXγ,Λ of X with

respect to the Lebesgue measure on R
d is

pXγ,Λ(X) =
1

(2π)d/2 det(Λ)
etr

(

−1

2
(Λ−1X − γ)(Λ−1X − γ)′

)

,

where, for a square matrix A, we define etr(A) to be the exponential of the trace of A. Let
W =mS. Then, the density pWγ,Λ of W with respect to the Lebesgue measure on R

d(d−1)/2

is

pWγ,Λ(W ) =
1

2md/2Γd(n/2)det(Λ)m
det(S)(m−d−1)/2etr

(

−1

2
(ΛΛ′)−1W

)

.

Now, let W = TT ′ be the Cholesky decomposition of W . We seek to compute the distribution
of the random lower lower triangular matrix T . To this end, the change of variables W 7→ T is
one-to-one, and has Jacobian determinant equal to 2d

∏d
i=1 t

d−i+1
ii . Consequently, the density

pTγ,Λ(T ) of T with respect to the Lebesgue measure is

(38) pTγ,Λ(T ) =
2d

2md/2Γd(m/2)
det(Λ−1T )metr

(

−1

2
(Λ−1T )(Λ−1T )′

) d∏

i=1

t−i
ii .

We recognize dν(T ) =
∏d

i=1 t
−i
ii dT to be a left Haar measure on L+, and consequently

(39) p̃Tγ,Λ(T ) =
2d

2md/2Γd(m/2)
det(Λ−1T )metr

(

−1

2
(Λ−1T )(Λ−1T )′

)

is the density of T with respect to dν(T ). After these rewritings, The density p̃X,T
γ,Λ (X,T ) of

the pair (X,T ) with respect to dX × dν(T ) is given by

p̃X,T
γ,Λ (X,T ) =

2d

K

det(Λ−1T )m

det(Λ)
etr

(

−1

2
(Λ−1T )(Λ−1T )′ − 1

2
(Λ−1X − γ)(Λ−1X − γ)′

)

with K = (2π)d/22md/2Γd(n/2). The change of variables (X,T ) 7→ (T−1X,T ) has Jaco-
bian determinant equal to det(T ). If M = T−1X , then, the density p̃M,T

γ,Λ of (M,T ) with
respect to dM × dν(T ) is given by

p̃M,T
γ,Λ (M,T ) =

det(Λ−1T )m+1

K ′′ etr

(

−1

2
(Λ−1T )(Λ−1T )′ − 1

2
(Λ−1TM − γ)(Λ−1TM − γ)′

)

.

We now marginalize T to obtain the distribution of the maximal invariant M . Since the
integral is with respect to the left Haar measure dν(T ), we have that
∫

T∈L+

p̃M,T
γ,Λ (M,T )dν(T ) =

∫

T∈L+

p̃M,T
γ,I (M,Λ−1T )dν(T ) =

∫

T∈L+

p̃M,T
γ,I (M,T )dν(T ),

and consequently,

pMγ,Λ(M) =
2d

K

∫

T∈L+

det(T )m+1etr

(

−1

2
TT ′ − 1

2
(TM − γ)(TM − γ)′

)

dν(T )

=
2d

K
e−

1

2
‖γ‖2

∫

T∈L+

det(T )m+1etr

(

−1

2
T (I +MM ′)T ′ + γ(TM)′

)

dν(T ).
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The matrix I +MM ′ is positive definite and symmetric. It is then possible to perform its
Cholesky decomposition (I +MM ′) =AA′. With this at hand, the previous display can be
written as

pMγ,Λ(M) =
e−

1

2
‖γ‖2

K

∫

T∈L+

det(T )m+1etr

(

−1

2
(TA)(TA)′ + γ(TM)′

)

dν(T ).

We now perform the change of variable T 7→ TA−1. To this end, notice that dν(A−1) =

dν(T )
∏d

i=1 a
−(d−2i+1)
ii , and consequently

pMγ,Λ(M) =
2d

K

e−
1

2
‖γ‖2∏d

i=1 a
2i
ii

det(A)m+d+2

∫

T∈L+

det(T )m+1etr

(

−1

2
TT ′ + γ(TA−1M)′

)

dν(T )

=
Γd

(
m+1
2

)

πd/2Γd

(
m
2

)

∏d
i=1 a

2i
ii

det(A)m+d+2
e−

1

2
‖γ‖2

PT
m+1

[

e〈γ,TA−1M〉
]

,

so that that at γ = 0 the density pM0,Λ(M) takes the form

pM0,Λ(M) =
Γd

(
m+1
2

)

πd/2Γd

(
m
2

)

∏d
i=1 a

2i
ii

det(A)m+d+2
,

and consequently the likelihood ratio is

pMγ,Λ(M)

pM0,Λ(M)
= e−

1

2
‖γ‖2

PT
m+1

[

e〈γ,TA−1M〉
]

.

REMARK A.2 (Numerical computation). Computing the optimal e-value is feasible nu-
merically. We are interested in computing

PT
m+1

[

e〈x,Ty〉
]

,

where T is a L+-valued random lower triangular matrix such that TT ′ ∼ W (m + 1, I),
and x, y ∈ R

d. Define, for i ≥ j, the numbers aij = xiyj . Then 〈x,Ty〉 =∑i≥j aijTij . By
Bartlett’s decomposition, the entries of the matrix T are independent and T 2

ii ∼ χ2((m+1)−
i+1), and Tij ∼N(0,1) for i > j. Hence, our target quantity satisfies

PT
m+1[e

〈x,Ty〉] =PT
m+1[e

∑
i≥j aijTij ] =

∏

i≥j

PT
m+1[e

aijTij ].

On the one hand, for the off-diagonal elements satisfy, using the expression for the moment
generating function of a standard normal random variable,

PT
m+1[e

aijTij ] = exp

(
1

2
a2ij

)

.

For the diagonal elements the situation is not as simple, but a numerical solution is possible.
Indeed, for aii ≥ 0, and ki = (m+1)− i+1

PT
m[eaiiTii ] =

1

2
ki

2 Γ
(
ki

2

)

∫ ∞

0
x

ki
2
−1 exp

(

−1

2
x+ aii

√
x

)

dx

= 1F1

(
ki
2
,
1

2
,
a2ii
2

)

+

√
2aiiΓ

(
ki+1
2

)

Γ
(
ki

2

) 1F1

(
ki + 1

2
,
3

2
,
a2ii
2

)

,
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where 1F1(a, b, z) is the Kummer confluent hypergeometric function. For aii < 0,

1

2ki/2Γ
(
ki

2

)

∫ ∞

0
xki/2−1 exp

(

−1

2
x+ aii

√
x

)

dx=
Γ(ki)

2ki−1Γ
(
ki

2

)U

(
ki
2
,
1

2
,
a2ii
2

)

,

and U is Kummer’s U function.

APPENDIX B: E-STATISTICS T ∗
N WITH VARIABLE STOPPING TIMES: THE

FILTRATION MATTERS

Consider the the t-test as in Example 1.1. Fix some 0< a< b, and define the stopping time
N∗ := 1 if |X1| 6∈ [a, b]. N∗ = 2 otherwise. Then clearly N∗ is not adapted to (hence not a
stopping time relative to) (Mn)n as defined in that example, since M1 ∈ {−1,1} coarsens
out all information in X1 except its sign. Now let δ0 := 0 (so that H0 represents the normal
distributions with mean µ= 0 and arbitrary variance). Let T ∗,δ1

n (Xn) be equal to the GROW
e-statistic T ∗

n(X
n) as in (14); here we make explicit its dependence on δ1. For H1, to simplify

computations, we put a prior Π̃δ
1 on ∆1 := R. We take Π̃δ

1 to be a normal distribution with
mean 0 and variance κ. We can now apply Corollary 8.3 (with prior Π̃δ

0 putting mass 1 on
δ = δ0 = 0), which gives that T̃n(X

n) is an e-statistic, where

T̃n(x
n) =

∫
1√
2πκ2

exp

(

− δ21
2κ2

)

· T ∗,δ1
n (xn)dδ1

coincides with a standard type of Bayes factor used in Bayesian statistics. By exchanging the
integrals in the numerator, this expression can be calculated analytically. The Bayes factor
T̃1(x1) for x1 = x1 is found to be equal to 1 for all x1 6= 0, and the Bayes factor for (x1, x2)
is given by:

T̃2(x1, x2) =

√
2κ2 + 1 · (x21 + x22)

κ2(x1 − x2)2 + (x21 + x22)
.

Now we consider the function

f(x) :=EX2∼N(0,1)[T̃2(x,X2)].

f(x) is continuous and even. We want to show that, with N∗ as above, T̃N∗(XN∗

) is not an
E-variable for some specific choices of a, b and κ. Since, for any σ > 0, the null contains the
distribution under which the Xi are i.i.d. N(0, σ), the data may, under the null, in particular
be sampled from N(0,1). It thus suffices to show that

EX1,X2∼N(0,1)[T̃N∗(XN∗

)] = PX1∼N(0,1)(|X1| 6∈ [a, b])+EX1∼N(0,1)[1|X1|∈[a,b]f(X1)]> 1.

But from numerical integration we find that f(x) > 1 on [a, b] and [−b,−a] if we take
κ = 200, a≈ 0.44 and b ≈ 1.70. Using again numerical integration, we find that the above
expectation is then approximately equal to 1.19, which shows that, even though T̃n is an e-
statistic at each n by Corollary 8.3 (it is even a GROW one), T̃N∗ is not an e-statistic (its
expectation is 0.19 too large), providing the desired counterexample.
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