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Abstract

A standard practice in statistical hypothesis testing is to mention the p-value alongside
the accept/reject decision. We show the advantages of mentioning an e-value instead.
With p-values, we cannot use an extreme observation (e.g. p � α) for getting better
frequentist decisions. With e-values we can, since they provide Type-I risk control in
a generalized Neyman-Pearson setting with the decision task (a general loss function)
determined post-hoc, after observation of the data — thereby providing a handle on
‘roving α’s’. When Type-II risks are taken into consideration, the only admissible decision
rules in the post-hoc setting turn out to be e-value-based. We also propose to replace
confidence intervals and distributions by the e-posterior, which provides valid post-hoc
frequentist uncertainty assessments irrespective of prior correctness: if the prior is chosen
badly, e-intervals get wide rather than wrong, suggesting the e-posterior minimax decision
rule as a safer alternative for Bayes decisions. The resulting quasi-conditional paradigm
addresses foundational and practical issues in statistical inference.

Dedicated to the memory of Sir David R. Cox (1924-2022).

1 Introduction

We perform a null hypothesis test with significance level α and we observe a p-value p� α.
Why aren’t we allowed to say “we have rejected the null at level p”? While a continuous source
of bewilderment to the applied scientist, professional statisticians understand the reason: to
get a Type-I error probability guarantee of α — a cornerstone of the Neyman-Pearson (NP)
theory of testing — we must set α in advance. But this immediately raises another question:
why should the p-value be mentioned at all in scientific papers, next to the reject/accept
decision for the pre-specified α (Berger, 2003, Hubbard, 2004)? The prevailing attitude is
to accept this standard practice, on the grounds that it “provides more information” — as
explicitly stated by, for example, Lehmann (1993), one of NP theory’s main contributors.
But this is problematic: there is nothing in NP theory to tell us what the decision-theoretic
consequences of ‘p � α’ could be, whereas at the same time, the fundamental motivation
behind NP theory is decision-theoretic: according to Neyman (1950), “[all of] mathematical
statistics deals with problems relating to performance characteristics of rules of inductive
behavior [i.e. decision rules] based on random experiments”. There is no simple way though
to translate observation of a p with p� α into better decisions: as is well-known and reviewed
below (Equations (5) and (14)), intuitive and common decision-theoretic interpretations of
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p � α are usually just wrong. We are therefore faced with a standard practice in NP
testing that, according to NP theory, is not part of mathematical statistics! In fact, even
just stating that p measures ‘evidence against the null’, without attaching direct decision-
theoretic consequences to it, is highly problematic — as has been forcefully argued by many,
p-values have properties that are at odds with any reasonable definition of ‘evidence’; see e.g.
(Royall, 1997) and the many references therein.

E as the New P We argue that this issue can be resolved, once and for all, by mentioning
e-values rather than p-values next to the accept/reject decision. E-values (Vovk and Wang,
2021, Shafer, 2021, Grünwald et al., 2019, Ramdas et al., 2021) are a recently popularized
alternative for p-values that are related to, but far more general than, likelihood ratios.
Importantly, as reviewed below, for any NP test with the accept/reject-decision based on
a p-value, the exact same test can be implemented by basing the decision on an e-value.
Thus there is no a priori reason why one should accompany the decision of a NP test with
a p-value rather than an e-value. But, in contrast to the p-value, the e-value has a clear
decision-theoretic justification that remains valid if decision tasks are formulated post-hoc,
i.e. after seeing, and in light of, the data. Concretely, after the result of a study has been
published, and when new circumstances prevail, one conceivably might contemplate different
actions, with different associated losses, than originally planned. For example, a study about
vaccine efficacy (ve) in a pandemic may have been set up as a test between null hypothesis
ve ≤ 30% and alternative ve ≥ 50%. The original plan was to vaccinate all people above 60
years of age if the null is rejected. But suppose the null actually gets rejected with a very
small p-value � α, and at the same time the virus’ reproduction rate may be much higher
than anticipated. Based on both the observed data (summarized by p) and the changed
circumstances, one might now contemplate a new action, vaccinate everyone over 40, with
higher losses if the alternative is false and higher pay-offs if it is true. E-values can be used
unproblematically for such a post-hoc formulated decision task; p-values cannot. A second
example is simply the fact that scientific results are published and remain on record so as to
be useful for future deployment. A company contemplating to produce medication X may
find a publication about the efficacy of X that is a few years old, but was never acted upon.
Consider the situation that the fact that the null (no efficacy) was rejected at the given α
would not nearly be enough evidence to justify further investment, but in fact the observed
p-value (or inverse e-value) was � α. How can this information be transferred into taking a
rational decision about further investment? E-variables provide a handle on such problems
that p-values do not.

From Testing to Estimation with Confidence: the e-posterior The p� α question
has a counterpart in estimation with confidence intervals. Upon observing data from a para-
metric statistical model {Pθ : θ ∈ Θ}, the question now becomes how to properly interpret
the statement “θ ∈ csα”, where csα is a (1 − α)-confidence set, usually an interval. The
correct, basic interpretation only says that, when repeatedly performing studies, the true pa-
rameter will lie in csα in a fraction of about 1−α studies. But practitioners want more, and
indeed, cs’s are often given an evidential interpretation — one outputs not one but a system
of confidence intervals, one for each of a series of coefficients such as 80%, 90%, 95%, 99%,
and this, it is said “summarizes what the data tell us about θ, given the model” (Cox and
Hinkley, 1974, page 227) or “the information about the parameter” (Lehmann, 1959). Such
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an evidential interpretation is highly problematic though. Illustrations abound (Royall, 1997)
and include the famous setting of Cox (1958) in which optimal (minimal width) confidence
intervals may depend on an independent coin flip that is totally external to the experiment
being performed. Interpretational problems concerning ‘evidence’ are sometimes dismissed
as vague, but as we show in Example 2 and 3, they translate into serious practical problems
once we deal with post-hoc determined decision tasks as above.

Our second main claim is that these issues can be resolved by replacing standard cs’s
by special cs’s based, once again, on e-values — the recently popularized anytime-valid css
(Darling and Robbins, 1967, Howard et al., 2021) being a special case. To see how, first note
that standard cs systems as above can be conveniently represented by a single data-dependent
confidence distribution (cd) on Θ (Schweder and Hjort, 2016); for some models this coincides
with the Bayesian posterior in an objective-Bayes analysis (Berger, 2006). Similarly systems
of e-value based cis can be represented by a single data-dependent function on Θ that we will
call an e-posterior (without the word ‘distribution’ attached, since technically it isn’t). In
Example 2 and 3 we show that using the cd to guide decisions against standard loss functions
can have bad consequences if the loss function is chosen in a post-hoc, data-dependent way:
the loss one expects to make, according to the confidence distribution, may be much smaller
than the actual expected loss, which may even be infinite. In contrast, the loss one expects
to make according to the e-posterior with the associated decision rule gives a correct upper-
bound-in-expectation on the actual expected loss — no matter what the true parameter
is.

The BIND Assumption underlying p-values and standard confidence intervals
While so far we highlighted the problems with post-hoc determined loss functions, in the
next section we show that decisions based on p’s and cs’s in an intuitive manner may already
become unsafe as soon as the decision task involves a ‘Type-I’ loss function that can take on
more than two values, even if this loss function is determined in advance. Essentially, we can
only be sure that decisions based on p’s and cs’s are reliable if both (1) the loss function is
binary-valued (B) and (2), it is determined in advance, or at least independently (IND) of the
observed data. Thus, they really operate under a BIND (binary + independence) assumption.
E-variables and -posteriors lead to decisions that remain safe if BIND is violated.

Note the phrase used in an intuitive manner though. By this we mean that cd’s (or
p-values) are used to make decisions as if they were Bayesian posterior distributions (or
probabilities), commensurate with the confidence distribution’s close similarity to ‘objective
Bayes’ posteriors (see (5), (7), (10). Perhaps we can translate p-values and ci’s into decisions
in a different way, that remains valid without the BIND assumption? It turns out that we
can, but the only general way for doing so that we know of is to convert any given p-value
to an e-value, and any confidence posterior to an e-posterior via calibrators (for example,
(Shafer et al., 2011) show that (1/

√
p − 1 is a calibrator). But then we could also have

used E-methods directly, and this would often have resulted in tighter confidence intervals
(e-posteriors based on problem-specific e-variables lead to cis that are between 1.4–2 times
as wide as standard cis (Example 6); converting via calibrators can make them significantly
wider (Grünwald et al., 2019, Section 7)).
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1.1 History, Background and Contents of this Paper

Suppose we observe data Y taking values in some set Y, the null hypothesis H0 being rep-
resented as a collection of distributions for Y . An e-value is the value of a special type of
statistic called an e-variable. An e-variable is any nonnegative random variable S = S(Y )
that can be written as a function of the observed Y and that satisfies the inequality:

for all P ∈ H0: EP [S] ≤ 1. (1)

The e-variable’s simplest application is in defining tests: the S-based hypothesis test at level
α is defined to reject the null iff S ≥ 1/α. Since for any e-variable S, all P ∈ H0, by Markov’s
inequality, P (S ≥ 1/α) ≤ α), with such a test we get a Type-I error guarantee of α.

E-variables first implicitly appear in the testing literature as a building block of nonnega-
tive martingales in the work by H. Robbins and his students from the late 1960s (Darling and
Robbins, 1967, Robbins, 1970), but there they were not studied as separate entities. As such,
they have probably been originally introduced by Levin (of p vs np fame) (1976), were inde-
pendently re-discovered by Zhang et al. (2011) and were first analyzed by Shafer et al. (2011).
Still, the concept mostly lay dormant until 2019, when interest in them suddenly exploded
(Grünwald et al., 2019, Shafer, 2021, Henzi and Ziegel, 2021, Ramdas et al., 2021). In most
of these papers though, they are treated in a sequential context; ours (with Vovk and Wang
(2021), Wang and Ramdas (2020)) is one of the first to consider them nonsequentially. In the
sequential setting, they distinguish themselves from p-values by allowing to preserve Type-I
error guarantees under optional continuation — performing additional studies if previous
studies had certain outcomes, and then combining the results; when e-values are extended to
e-processes (Section 4) they can also deal with optional stopping (the difference between OS
and OC is explained by Grünwald et al. (2019)). The idea of distinguishing between deci-
sion tasks presented for and after an observation was anticipated (in a completely different,
nonstatistical context) by (Grünwald and Halpern, 2011, Section 3)

A different kind of Robustness Standard p and cs-based decision rely the BIND as-
sumption; an assumption that will often be false or unverifiable at the time study results are
published. E-values provide valid error and risk guarantees without making such assump-
tions, and are therefore robust tools for inference. But whereas ‘robustness’ usually refers to
robust inference in the presence of outliers, or model structure or noise process misspecifi-
cation, this is a different, much less studied form of robustness: robustness in terms of the
actual decision task that the study results will be used to solve.

From Wald to Generalized Neyman-Pearson (GNP) Technically, to obtain frequen-
tist guarantees without the BIND assumption we need to shift from errors and error proba-
bilities to losses and risks. This idea goes back to (Wald, 1939), one of the most influential
papers in the history of statistics: like Wald, we first re-formulate standard NP testing in
terms of risks. But while Wald lets go off the Type-I/II error paradigm as soon as he allows
for more than two actions, we stick with it and show that the e-value is then the natural
statistic to base decisions upon, and remains so if the decision task is determined post-hoc.
Thus, our GNP (Generalized Neyman-Pearson) Theory follows a path opened up by Wald
but apparently not pursued further thereafter.
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The Quasi-Conditional Paradigm & Related Work GNP and e-posterior based deci-
sion rules allow loss functions to be chosen in a fully ‘conditional’ manner (they can depend
on the observed data in arbitrary ways), but their performance is evaluated unconditionally
in terms of the sampling distribution. This quasi-conditional stance provides a middle ground
between fully Bayesian and traditional Neyman-Pearson-Wald type methods and analysis. It
involves priors, but inferences are (unconditionally) valid irrespective of their correctness —
the priors encode ‘hope’ rather than ‘belief’ (Section 4). It is related to, but quite different
from, conditional frequentist approaches (Kiefer, 1977, Berger et al., 1994); we elaborate on
the difference in Section 2.3. There we also discuss relations to inferential models (Martin
and Liu, 2015, Balch et al., 2019, Martin, 2021).

Contents Section 2.1 below introduces GNP testing with post-hoc loss functions. Sec-
tion 2.2 illustrates how confidence intervals and distributions have difficulties with post-hoc
decision functions. We then remark on how to properly interpret our findings in Section 2.3.
After these high-level sections we give a detailed mathematical treatment of our results. First,
Section 3 shows how all admissible decision rules in the GNP framework can be based on
e-values. Section 4 treats the e-posterior and the new e-posterior minimax decision rule. We
end by tying up loose ends — e.g. explaining how the theory can be extended to models with
nuisance parameters — in the concluding Section 5. All longer mathematical derivations and
proofs are delegated to the appendices.

2 High-Level Overview

2.1 Losses instead of Errors: the GNP setting

NP tells us to fix some α and then adopt the decision rule that, among all decision rules
with Type-I error bounded by α, minimizes the Type-II error. In his seminal (1939) paper,
Abraham Wald already suggested to re-interpret this procedure in terms of a nonnegative
loss function L(·, ·), with L(θ, a) denoting the loss made by action a if θ is the true state of
nature. In the basic NP setting, we have θ ∈ {0, 1} and A = {0, 1}, L(0, 1) > 0, L(1, 0) > 0
and we may ‘of course’ (as Wald writes) set L(0, 0) = L(1, 1) = 0. In this formulation, the
usual α-Type-I error guarantee is replaced by an `-Type-I risk guarantee. Formally, we fix
an ` in advance of observing the data and we say that decision rule δ, defined as a function
from Y to A, is Type-I risk safe if

risk(0, δ) ≤ `, where risk(0, δ) := sup
P0∈H0

EY∼P0 [L(0, δ(Y ))]. (2)

Following NP again, with again ‘error probability’ replaced by ‘risk’, we now postulate that
among all Type-I risk-safe decision rules, we ideally want to pick one that minimizes the
Type-II risk, given by

risk(1, δ) := sup
P1∈H1

EY∼P1 [L(1, δ(Y ))]. (3)

(2) expresses that, whatever we do, we want to make sure that our risk (expected loss) under
the null is no larger than `. This kind of procedure may have most appeal if L(1, 0) = `: `
then represents the loss that we can trivially achieve, simply by accepting the null — usually
this means taking no real action at all and perpetuating the status quo. By requiring the
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Type-I risk guarantee (2), we then impose that the risk of our decision rule is not larger than
our worst-case loss ` that we get if we perpetuate the status quo. Still, all our results below
continue to hold if L(1, 0) 6= `.

In a standard level-α-significance test, one rejects the null if p(y), the p-value correspond-
ing to data y, satisfies p(y) ≤ α. A corresponding decision rule in terms of loss functions is
to reject the null whenever the observed p(y) satisfies

p(y) · L(0, 1) ≤ `. (4)

We get exactly the same behaviour as for the standard α-test if we set L(1, 0) = `/α. For
example, for α = 0.05 we can set ` = 1 and then L(0, 1) := 20; then (4) tells us to reject the
null if p ≤ 0.05. The resulting decision rule will be Type-II error optimal among all decision
rules that satisfy Type-I error probability ≤ 0.05 if and only if it is Type-II risk optimal
among all decision rules that satisfy the Type-I risk bound (2): up till now it seems as we
have merely reformulated standard NP theory.

Actions of Varying Intensity But now suppose we have more than two actions available.
For example, consider four alternative actions: accept the null (retain the status quo), take
mild action (e.g. vaccinate all people over 60), take more drastic action (vaccinate everyone
over 40) and extreme action (vaccinate the whole population). Our first contribution is to
consider this question, too, in terms of Type-I and Type-II risk and confidence — thereby
taking a different direction than standard decision theory and in particular Wald (1939),
who switches to non-Neyman-Pearsonian decision rules as soon as more than two actions
are in play. For example, our action space could now be Ab = {0, 1, 2, 3} with loss function
Lb(0, 0) = 0, Lb(0, 1) = 20`, Lb(0, 2) = 100`, Lb(0, 3) = 500` and Lb(1, 3) < Lb(1, 2) <
Lb(1, 1) < Lb(1, 0) = `. In terms of p-values, the straightforward extension of (4) to this
multi-action case would be to play action a where a is the largest value such that

p(y) · Lb(0, a) ≤ `. (5)

But, assuming our p-value is strict so that it has a uniform distribution under the null, this
gives a Type-I risk of

EY∼P0 [Lb(0, δ(y))] =

(
1

20
− 1

100

)
· 20`+

(
1

100
− 1

500

)
· 100`+

1

500
· 500` = 2.6`, (6)

violating the guarantee we aimed to impose and showing that a naive p-value based procedure
does not work. The problem gets exacerbated if we allow for more than four actions: in
Appendix A.1) we show that the expected loss of the naive procedure (5) may go to∞ as we
add additional actions with Lb(0, a) increasing and Lb(1, a) decreasing in a. We also show
that an obvious ‘fix’, namely modifying (5) to make sure that for each action a, Lb(0, a) gets
multiplied by exactly the probability that action a is taken, does not solve this issue.

Post-Hoc Loss Functions Allowing more than two actions is really just a warm-up to a
further extension which arguably better models what often happens in, for example, medical
practice: the post-hoc determination or modification of a decision task, after seeing the data
and dependently on the data, such as described in the vaccine efficacy example in the intro-
duction. That is, there is really un underlying class (whose definition may be unknowable)
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of loss functions Lb(·, ·) with associated action spaces Ab, and the decision-maker is posed a
particular decision task Lb(·, ·) where b, indexing the loss actually used, is really the outcome
of a random variable B = b, whose distribution may depend on the data in all kinds of ways
(we give a precise formalization in Section 3.1). The actual B = b that is presented is thus
random and only fixed after the study result has become available; i.e. ‘post-hoc’. Crucially,
the process determining the actual value of B is typically murky; nobody knows exactly what
loss function would have been considered in what alternative circumstances; one only knows
the loss function finally arrived at.

Again, with p-values, we might be tempted to pick the largest action a such that (5)
holds, where now b is really the (observed, known) outcome of random variable B whose
definition is itself unknown. Now, even if for each b, Lb allows for only two actions, so that
the problem superficially resembles the standard NP setting, using (5) can have disastrous
consequences in the post-hoc setting, as the following example shows.

Example 1 Suppose there are three loss functions Lb, for b ∈ B = {1, 2, 3}, with cor-
responding actions Ab = {0, b}. We set L1(0, 1) = 20`, L2(0, 2) = 100`, L3(0, 3) = 500`,
Lb(0, 0) = 0, Lb(1, 0) := ` for all b ∈ B, and Lb(1, b) decreasing in b. This is like the previous
example, but rather than always being able to choose one among four actions, the very set
of choices that is presented to the decision maker via setting B = b might depend on the
data Y or on external situations. One cannot rule out that this is done in an unfavourable
manner — if the data suggest strong evidence then the policy developers (e.g. a pandemic
outbreak management team) might only suggest actions with drastic consequences. Suppose,
for example, that if p > 0.02, the decision-makers are presented loss L1; if 0.001 < p ≤ 0.02
they are presented loss L2; and if p ≤ 0.001 they are presented loss L3. Using (5), we then
get (assuming again uniform p) a Type-I risk of

EY∼P0 [L(0, δ(y))] = (0.05− 0.02) · 20`+ (0.02− 0.001) · 100`+ 0.001 · 500` = 3 · `.

As in (6) the resulting decision rule (5) is not Type-I risk safe, and again, the Type-I risk
can even go to infinity with the number of potential actions.

E-Variables Reporting evidence as e-values (as defined by (1)) rather than p-values solves
both the multiple action and post-hoc-loss issue identified above. In such a Generalized
Neyman-Pearson (GNP) setting (precise definition in Section 3), we can simply pick any
e-variable S we like and replace the decision rule (5) by: upon observing data Y = y and loss
function indexed by B = b,

select the largest a for which S−1(y) · Lb(0, a) ≤ `, i.e. Lb(0, a) ≤ S(y) · `, (7)

where here and in the sequel we write (with minimal abuse of notation) S(y) for the value
that S takes upon observation Y = y, and we adopt the (in our setting harmless) convention
that, for u = 0 and v ≥ 0, u−1v := 0 if v = 0 and u−1v = ∞ if v > 0. For the original NP
setting of two actions, this is simply the p-value based rule (5) with the p-value replaced by
1/S, illustrating that large e-values correspond to evidence against the null. But in contrast
to the p-value based rule, this one keeps being Type-I risk safe irrespective of the number of
actions: as we show in Lemma 1 below, in contrast to p-values: no matter what e-variable
S we take, no matter how many actions A contains, no matter the process determining the
loss B, we have the Type-I risk guarantee (2).
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As with p-values, many different e-variables can be defined for the same H0. An extreme
choice is to start with a p-value p and to set Snp(α) := (1/α) if p ≤ α and Snp(α) = 0 otherwise
(Shafer, 2021). Clearly EY∼P0 [Snp(α)] ≤ α(1/α) = 1 so Snp(α) is an e-variable. In the case of
a classical, 2-action NP problem as defined underneath (4), the test (7) based on e-variable
S = Snp(α) will lead to a = 1 (reject the null) exactly iff the classical NP test based on p
does. This shows that any p-based NP test can also be arrived at using (7) with a special
e-value: nothing is lost by replacing p-values with e-values. Still, in case there are more than
2 actions and/or post-hoc decisions, while preserving the `-Type-I risk guarantee, decisions
based on Snp(α) may not be a very wise in the Type-II risk sense. For example, with the
loss function used in (6) and α = 0.05, we get that even for very small underlying p (i.e.
extreme data), we will still choose action 1 whereas it seems more reasonable to select more
extreme actions, minimizing Type-II loss, as the evidence against the null gets stronger. In
case H0 = {P0} and H1 = {P1} are simple, this can be achieved by taking S to be a likelihood
ratio: assuming Pj has density pj relative to some µ,

Slr :=
p1(Y )

p0(Y )
(8)

which are immediately seen to be e-variables (EP0 [Slr]] =
∫
p0(y)(p1(y)/p0(y))dµ =

∫
p1(y)dµ(y) =

1), i.e. to satisfy (1). Extending likelihood-ratio based e-variable to composite H0 and H1 via
the reverse information projection is the central topic of Grünwald et al. (2019); see also Sec-
tion 5. We can compare Snp(α) and Slr if p underlying Snp(α) is itself a monotonic function
of the likelihood ratio Slr, as it will be for the Neyman-Pearson test with optimal power. In
the decision task above (5), when used in (7), Snp(α) can, for each α, select at most 2 actions
whereas Slr leads to selection of action 0, 1, 2 or 3 depending on the amount of evidence, at
the price of imposing a larger threshold before any particular action is selected compared to
the Sα that is optimal for that action (e.g. S0.05 is optimal for action 1 in this sense).

Admissibility More generally, among all Type-I risk safe decision rules, we aim only for
those that have admissible Type-II risk behaviour; we call a rule admissible if there exists
no other decision rule that is never worse and sometimes strictly better. Lemma 1 below
identifies the set of Type-II admissible decision rules as those that, for each y and b, follow
(7) for some e-variable S. It has the flavour of a complete class theorem (Berger, 1985)
showing that all reasonable GNP decisions may be based on e-variables.

The result does not indicate though which particular e-variable is Type-II risk optimal in
any given situation — this is impossible to determine, because it depends on the definition
of random variable B, which we assume to be unknown. In fact, in the above example,
as long as p is a monotonic function of Slr, Slr and, for all 0 < α < 1, Snp(α) are all
admissible (Example 4). So what admissible e-variable to use? We do not have a complete
answer to this question, but for many practical hypothesis testing problems we recommend
the e-variables of Grünwald et al. (2019), that optimize the GRO (Growth-Rate optimality)
criterion, related to good behaviour in an optional continuation setting. This criterion can
be optimized for without knowing the definition of B; we refer to Grünwald et al. (2019) for
details. For compositeH1 and for estimation problems (see below) the construction of good e-
variables/posteriors involves priors, but these have a ‘hope’ rather than ‘belief’ interpretation
— see Section 4.
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2.2 The Need for an E-Posterior

Now let us consider parametric models {Pθ : θ ∈ Θ}. Any collection of p-value based
Neyman-Pearson tests, one for each θ ∈ Θ in the role of the null, can be ‘inverted’ to
construct valid 1 − α-confidence intervals, one for each α. Analogously, any collection of
E-Variables {Sθ : θ ∈ Θ} with Sθ an e-variable for null {Pθ}, can be used to construct a
more robust (and wider) 1 − α-confidence intervals. Just like it is tempting to interpret a
‘system’ of confidence intervals, one for each α, or a cd, as a type of ‘posterior’, one can
also view the inverse P̄ (θ | Y ) := S−1

θ (Y ) as a type of posterior for parameter θ. The crucial
difference is that this e-based posterior leads to valid (in a specific frequentist sense which we
will define) inferences under a large class of decision-tasks that may be determined post-hoc,
in a data-dependent fashion, whereas standard confidence intervals can only be used under
the BIND assumption.

Example 2 Consider the normal location family: under Pθ the data are i.i.d. ∼ N(θ, 1).
With the standard (uniform, improper) ‘objective Bayes’ prior for this family and data Y =
xn, the posterior W ◦ | Y = xn has a normal density w◦(θ | xn) with mean and median equal
to the maximum likelihood estimator (MLE) θ̂(xn) = n−1

∑n
i=1 xi and variance 1/n (Berger,

1985). In this case the objective Bayes posterior also coincides with the fiducial and the
confidence distribution (cd) (Schweder and Hjort, 2016) based on xn. These cd’s are defined
such that for each α, [θL, θR] with θL the left-α/2 quantile and θR the right-α/2 quantile give
the standard two-sided (1 − α)-confidence interval. The standard (1 − α) Bayesian credible
interval based on w◦(θ | xn) and the standard (1− α)-confidence interval therefore coincide.
Analogously to how we connected Type-I error probability to Type-I risk, we can connect the
validity of a (1− α) -confidence interval for a prespecified α to a risk guarantee of the form

EY∼Pθ [B · 1θ 6∈[θL(Y ),θR(Y )]] ≤ ` for some prespecified `. (9)

B, measuring how bad it is to make a mistake, may again depend on the data in potentially
unknowable ways. The decision task is then to output a smallest possible [θL, θR] for which
(9) holds.

Based on the cd w◦(θ | Y ), one would then presumably pick the smallest interval symmet-
ric around θ̂ for which the Bayes posterior satisfies the required risk bound, i.e. the smallest
[θL(Y ), θR(Y )] such that |θL(Y )− θ̂| = |θR(Y )− θ̂| and

Eθ̄∼W ◦|Y=xn [b · 1θ̄ 6∈[θL(Y ),θR(Y )] ≤ ` (10)

where b is the observed value taken by B; and for this interval, (10) holds with equality. The
intuitive appeal for choosing this [θL(Y ), θR(Y )] is clear: (10) expresses that as a decision-
maker one can expect the loss given the data to be bounded by `; one simply wants to pick
the smallest, most informative interval for which this holds true. Yet the real expectation of
the loss may very well be different from (10) — it is given by

EY∼Pθ∗
[
B(Y ) · 1θ∗ 6∈[θL(Y ),θR(Y )

]
, (11)

with θ∗ indexing the true sampling distribution. This quantity may be much larger than `
(and hence than (10)) if B is dependent on Y . As an extreme example, fix any ε > 0, If,
whenever Y ≥ ε, we set B := `/2F0(−Y + ε2/Y ) where F0 is the CDF of a standard normal,
then, under θ∗ = 0, (11) evaluates to ∞ (see Appendix A.1).
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This discrepancy between what one believes will happen according to a posterior and what
actually will happen has repercussions for Neyman’s interpretation of statistics as inductive
behaviour. To illustrate, imagine a decision-maker who is confronted with such a decision
problem many times (each time j the underlying θ(j) with Y(j) ∼ Pθ(j) and the sample size
n(j) and the importance function B(j) may be different). Then, based on (10) one would
think to have, by the law of large numbers, the guarantee that, almost surely,

lim sup
j→∞

1

m

m∑
j=1

B(j) · 1θ 6∈[θL(Y(j)),θR(Y(j))] ≤ `. (12)

Unfortunately however, this statement is likely false if in reality there is a dependence between
B(j) and Y(j) (the problem, may, for example, become a lot more relevant once one knows

that θ̂ (and hence presumably θ) lies in a particular region of interest). Assume for example
that there is a sequence of independent studies Y(1), Y(2), . . ., all of which are of the form
Y(j) = (X(j),1) and thus have sample size 1 (we may think of the Y(j) as z-scores summarizing
studies of varying sample size). Instantiate ε = 0.01 and set B(j) := `/2F0(−Y(j) + ε2/Y(j)) as
above if Y(j) ≥ ε and B(j) = 0 otherwise. Suppose that the Y(j) are all independently sampled
from the same θ∗ = 0. Here is a sample of 15 corresponding B(j)’s (generated by R):

1.15, 0, 3.44, 1.09, 1.91, 4.17, 10.40, 1.11, 0, 0, 1.47, 1.31, 0, 0, 0 (13)

(while the sequence looks rather innocuous, the definition of B and the fact that θ∗ stays
the same over time may still feel artificial; see Section 2.3). Then, using (11), with θL, θR
chosen by (10), the limit in (12) will go to ∞ rather than to `. The first reaction may be
to require the decision-maker to model the dependency between Y and B. But the precise
relation may be unknowable, and then it is not clear how to do this. This general discrepancy
between posterior expectations and what can actually be expected fully disappears if we base
our decisions on e-posteriors rather than confidence distributions/objective Bayes posteriors
(Example 8).

E-posterior Minimax Decision Rules: beyond the Type-I/II Dichotomy The ap-
plication above was still implicitly within the Type-I and Type-II risk paradigm, the Type-II
loss being the width of the reported confidence interval. However, now that we look at es-
timation rather than testing, other types of loss functions and decision criteria do suggest
themselves. In Section 4.2 we introduce the E-Posterior Minimax Decision Rule, which leads
to decisions that minimize expected-loss bounds for standard loss functions such as squared
error loss, where these ‘luckiness’ bounds (Example 5) hold irrespective of whether the prior
assumptions encoded in the E-posterior hold or not, and the bounds can be evaluated based
on one’s sample.

Example 3 Consider the confidence distribution W ◦ | Xn of the previous example again.
Suppose we aim to find the estimator with smallest mean square error, where the importance
of the problem at hand can depend on the data and on the specific study one is in in unknown
ways. Take the Gaussian location family and set

Lb(θ, a) = b · (θ − a)2.

For simplicity, as in Example 2, we take n = 1 fixed, so that θ̂(Y ) = Y = X1. The idea is
that we are presented a decision task with loss function LB(θ, a). Above we assume that the

10



loss itself is linearly related to B; our approach extends to arbitrary relations (in general we
might even deal with some b indicating a squared loss problem whereas other b indicating,
say, an absolute loss problem), but linearity allows for a simple treatment since, if B is treated
as independent of the data, then the Bayes optimal action based on w◦(θ | y) is simply the
MLE, θ̂ irrespective of the observed B. Based on the this posterior, i.e. ignoring potential
dependencies between Y and B, the loss we think we make upon observing Y and B, is
given by Eθ̄∼W ◦|Y [LB(θ̄, θ̂)] = EȲ∼Pθ̂

[LB(Ȳ , θ̂)], so that the average of the losses we expect
to make, in several studies, is given by

EY∼Pθ∗ [EȲ∼Pθ̂(Y )
[LB(Y )(Ȳ , θ̂(Y ))]]

whereas the loss we actually make on average is EY∼Pθ∗ [LB(θ∗, Y )]. In Appendix A.1 we show
that one can define B in such a way that the first expression is finite and the second expression
is infinite. The numbers B one will actually be presented with in an i.i.d. sequence of studies
of size 1 (as in the previous example) may again not reveal that something ‘adversarial’ is
going on — here are 15 i.i.d. realizations of B (generated by R using the prescription of
Example 9):

1.04, 1.62, 1.73, 1.07, 1.67, 1.17, 1.26, 1.00, 1.184, 1.02, 4.08, 1.60, 1.01, 1.07, 1.57.

In Example 9 we show that the e-posterior minimax decision rule also leads one to adopt the
MLE here, but the discrepancy between ‘true’ and ‘believed’ expectation will disappear.

2.3 On the Proper Interpretation of These Results

The Quasi-Conditional Paradigm Assume we have a prior on H0 and H1 and priors
W0 and W1 on the distributions inside these hypotheses. We can then use Bayes’ theorem
to calculate the Bayes posterior P (H0 | Y ) based on data Y and then define the conditional
Type-I error probability to be simply equal to this posterior, α̂|y := P (H0 | Y = y), implying
that

“for any fixed α0, among all studies with α̂|Y ≥ α0,
we make a Type-I error at most a fraction α0 of the time”.

(14)

Such a fully conditional statement, with post-hoc determined α̂|Y , is only correct if the priors
can be fully trusted. It would definitely be incorrect if we set α̂|Y either to a p-value or an
e-value based on Y . Still, with e-values, as we have seen, we can define the decision task to be
any arbitrary function of the data —even a function unknown to the statistician — and still
get valid frequentist inference. Thus, we may term our approach quasi-conditional : it is fully
conditional (arbitrary dependency on data possible) in terms of the decision task presented,
yet it is unconditional in the sense that the performance of the approach is evaluated in
expectation over all possible data, and not conditionally.

This sets it apart from all main existing approaches: the Bayesian approach allows full
conditionality in terms of both evaluation and the decision task presented (it is perfectly
alright if the decision task is decided upon in light of the data) — which comes at the price
of strong assumptions. The classical NP approach and general frequentist decision theory is
neither conditional in terms of evaluation nor in terms of decision task — the latter can be
set freely, but it has to be set in advance or at least independently of the data. And finally,
although our work has been inspired by classical conditional frequentist approaches (Kiefer,
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1977, Berger et al., 1994, Berger, 2003) the latter are quite different in that they condition
on some coarsening C of the data when evaluating procedures (giving ‘C-conditional error
probabilities’) but do not allow the decision task to be set in arbitrary data-dependent ways.
We plan to provide a more detailed comparison to these latter approaches elsewhere.

The quasi-conditional stance has more in common with inferential models (IMs) of R.
Martin and collaborators (Martin and Liu, 2015, Balch et al., 2019, Martin, 2021). Like we
do in the present work (Example 2 and 3) they point out discrepancies between what one
would expect to happen (or think to happen with high probability) according to a Bayesian
posterior and what can be expected to happen according to the unknown, true distribution
and provided IMs as a safer alternative for a fiducial or ‘objective Bayes’ posterior. Unlike
our inferential posteriors, the specific IMs proposed by (Martin and Liu, 2015) still work
under the BIND assumption and thus may not provide reliable inferences if BIND does not
hold. But it may very well be that other IMs (IMs constitute a family of methods rather
than a single method) that essentially behave like e-posteriors as well; finding out if this is
the case is a major goal for future work, as well as placing both IMs and the present work in
the context of safe probability, a method for expressing clearly what decision tasks inference
method can be safely used for Grünwald (2018).

3 Detailed Treatment of GNP Decision Problems

3.1 Type-I Risk Safety and Compatibility

Definition 1 A multi-loss decision task is a tuple (B,Γ, {(Ab, Lb : Γ ×Ab → R+
0 ) : b ∈ B})

with, for each b ∈ B, Lb representing a loss function mapping state of nature γ ∈ Γ and
action ab in action space Ab to the loss Lb(γ, ab).

Relative to any given multi-loss decision task and random variable Y taking values in set
Y, a multi-loss decision rule is defined to be any set of functions {δb : b ∈ B}, with δb(y)
denoting the a ∈ Ab picked when loss function Lb is presented and Y = y is observed.

Definition 2 A GNP (Generalized Neyman-Pearson) decision task for testing is a multi-
loss decision task with Γ ∈ {0, 1}, accompanied by a set of maximally acceptable risks `b, one
for each b ∈ B, i.e. a collection {(Lb(0, ·), Lb(1, ·), `b,Ab) : b ∈ B}, such that for all b ∈ B,

• Ab is a subset of R+
0 containing 0; the Type-I loss L(0, ·) : Ab → R+

0 is an increasing
function of a ∈ Ab, while the Type-II loss Lb(1, ·) : Ab → R is strictly decreasing in a
and `b ∈ R+

0 .

Relative to any given GNP decision task and null hypothesis H0 = {Pθ : θ ∈ Θ0} and random
variable Y taking values in Y we further define:

• Let δ be any decision rule and let S = S(Y ) be any e-variable. We call δ compatible
with S if we have Lb(0, δb(y)) ≤ `bS(y) for all y ∈ Y.

As in the examples in Section 2, we may usually assume Lb(0, 0) = 0 for all b ∈ B. In practice,
`b would be set by the decision-maker and indicate the maximum acceptable Type-I risk in
case the decision task would be restrict to B′ = {b}, i.e. Lb would be presented irrespective
of the data. For simplicity in interpreting the results we set `b := ` for some fixed ` for all
b ∈ B in all examples until Section 4.2, when the use of having `b depend on b will become
clear.
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Let us first consider a concrete setting in which a policy maker observes not just Y
but also some other, random variable U expressing ‘side-information’ that is independent
of Y and distributed according to some distribution Q. Based on (U, Y ), the actual loss
function LB with index B to be used is decided using some additional, conditional distribution
R | U, Y . Importantly, Q, R and the definition of U may be unknown to both statisticians
and policymakers.

Now let B and U be countable. Let ∆U be the set of all distributions on U , and let ∆B|U,Y
be the set of all conditional distributions on B given U, Y , i.e. each R ∈ ∆B|U,Y provides,
for each u ∈ U and each y ∈ Y, a distribution R(B = · | U = u,= y) on B. For a given
GNP decision task and null hypothesis H0, we say that decision rule δ is Type-I risk-safe if
we have

For all Q ∈ ∆U , all R ∈ ∆B|U,Y , all P ∈ H0: EY∼PEU∼QEB∼R|U,Y

[
LB(0, δB(Y ))

`B

]
≤ 1,

(15)
where we note that if `b is the same for all b we can replace division by `B by putting ` on
the right. We may think of R as the distribution that a policy maker, or an adversary, or
‘society’ implicitly chooses to decide on the particular decision task to be solved once the
outcome of the study is known. In practice, the space U of ‘values’ that U can take and the
definition of R may be unknowable, but this need not concern us: the details of U,Q and R
are irrelevant, since (15) is equivalent to

sup
P∈H0

EY∼P

[
sup
b∈B

Lb(0, δb(Y ))

`b

]
≤ 1. (16)

To see the equivalence of (15) and (16), note that (16) ⇒ (15) is obvious; the reverse impli-
cation follows by taking as distribution R in (15) the one which, for each y ∈ Y and u ∈ U ,

puts probability 1 on the b achieving supb∈B
Lb(0,δb(Y ))

`b
, assuming the supremum is achieved.

If it is not achieved, the result follows by taking a limit of b’s towards the supremum.
Given this equivalence we shall take (16), which avoids all tenuous assumptions about

existence of countable sample spaces and random variables as definition of Type-I risk safety
from now on.

E-Variable Compatibility determines Type-I Risk Safety and vice versa In NP
Theory, Type-I error guarantees come first — we look for an optimal decision rule among all
rules that have the Type-I error guarantee. Analogously, we first restrict our search for ‘good’
decision rules to those that are Type-I risk safe for the given decision task. The following
observation shows that compatibility with an e-variable is the same as Type-I risk safety,
thereby explaining the importance of e-variables to (generalized) NP testing:

Proposition 1 Fix an arbitrary GNP decision task. For every decision rule δ defined relative
to this problem:

1. For every e-variable S on Y: if δ is compatible with S, then δ is Type-I risk safe.

2. Suppose that δ is Type-I risk safe. Set S(y) := supb∈B Lb(0, δ(y))/`b. Then (I) S is
an e-variable, and δ is compatible with this S, and, (II), for all b ∈ B, Lb(0, 0)/`b ≤
infy∈Y S(y). As a consequence, for arbitrary given δ, we have: if there exists no e-
variable S on Y such that δ is compatible with S, then δ is not Type-I Risk safe.
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Proof: Both Part 1 and Part 2(I) are immediate from the definition. For Part 2(II), use that
Lb(0, a) is increasing in a, so that

Lb(0, 0)

`b
≤ inf

y∈Y

Lb(0, δb(y))

`b
≤ inf

y∈Y
sup
b′∈B

Lb′(0, δb′(y))

`b′
= inf

y∈Y
S(y).

2

3.2 Type-II Admissibility and GNP Decision Rules

To move to Type-II risk, we must specify an alternative H1, like H0 a set of distributions for
Y . For any given decision rule δ◦ relative to a given GNP decision task, any H0 and H1 and
given Q and R as defined above, we define the Type-II risk as

risk(1, δ◦) := sup
P1∈H1

EY∼P1EU∼QEB∼R|U,Y [LB(1, δ◦B(Y ))] (17)

We call a decision rule δ◦ Type-II strictly better than decision rule δ if:

For all P1 ∈ H1, Q ∈ ∆U , R ∈ ∆B|U,Y :

EY∼P1EU∼QEB∼R|U,Y [LB(1, δ◦B(Y ))] ≤ EY∼P1EU∼QEB∼R|U,Y [LB(1, δB(Y ))] (18)

For some P1 ∈ H1, some Q ∈ ∆U , some R ∈ ∆B|U,Y :

EY∼P1EU∼QEB∼R|U,Y [LB(1, δ◦B(Y ))] < EY∼P1EU∼QEB∼R|U,Y [LB(1, δB(Y ))] (19)

We call a decision rule δ Type-II risk-admissible if it is Type-I risk-safe and there is no
other Type-I risk-safe decision rule δ◦ that is strictly better in the sense above. Clearly this
definition is in the same spirit as standard admissibility definitions in classical statistical
decision theory, and the lemma below is in the spirit of a complete class theorem (Berger,
1985) expressing that in searching for good decision rules in GNP problems we can restrict
ourselves to those based on e-variables via the maximal decision rule, which we now define:

For given e-variable S, the maximal decision rule δ∗ relative to S upon observing B = b
and Y = y, is given by:

δ∗b (y) := the largest a ∈ Ab such that Lb(0, a) ≤ `bS(y). (20)

To state Lemma 1 we need two additional definitions: we call an e-variable S sharp if for
some P ∈ H0, EP [S] = 1. Let B : Y → B be some function. We call decision rule δ∗ defined
relative to e-variable S as in (20) B-sharp if δ∗B(y)(y) satisfies (20) a.s. with equality, i.e. for
all P ∈ H0,

LB(Y )(0, δB(Y )(Y )) = `B(Y ) · S(Y ), with P -probability 1.

For a sharp e-variable S, there cannot be another e-variable that gives uniformly more ev-
idence against the null, i.e. that is almost surely not smaller but with positive probability
strictly larger. For a B-sharp decision rule against a sharp e-variable S, there cannot be
another decision rule with a.s. uniformly smaller Type-II losses under LB that is still Type-I
risk safe.

Lemma 1 Suppose that all P ∈ H0 ∪ H1 have full support Y. Suppose further that (I) for
some c ≥ 0, for all b ∈ B, Lb(0, 0) ≤ c`b; and (II) for all b ∈ B, Ab is either finite, or
Lb(0, a) is continuous in a with either (IIa) supa∈Ab Lb(0, a) =∞ or (IIb) supa∈Ab Lb(0, a) =
maxa∈Ab Lb(0, a) is achieved. Then:
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1. For any e-variable S that is bounded below by c, (20) has a unique solution δ∗; and this
maximal δ∗ is compatible with S (and hence by Proposition 1, Type-I risk safe).

2. All Type-II risk admissible decision functions are essentially of the form (20) relative
to some e-variable S, in the sense that if δ is Type-II risk admissible, then there exists
an S such that, with δ∗ a maximal rule as in (20), for all P ∈ H0 ∪ H1, b ∈ B:
P (δb(Y ) = δ∗b (Y )) = 1.

3. Suppose that B contains the special value triv with Atriv = {0} and Ltriv(0, 0) =
Ltriv(1, 0) = 0; `triv can be set to any value ≥ 0. Suppose there exists a sharp e-
variable S and a function B : B → Y such that the maximal δ∗ defined by (20) exists
and is B-sharp relative to this S. Then δ∗ is admissible.

The condition in Part 1 that S is bounded below by c ≥ 0 is automatically satisfied in
the natural setting that for all b ∈ B, Lb(0, 0) = 0. If we have Lb(0, 0) > 0 (this will
become relevant in Section 4.2) then we can modify any given S to a ‘dampened’ version
S[1/2] := (1/2) + (1/2)S. Clearly, S[1/2] is still an e-variable, and the condition would now
automatically hold if we set `b = 2Lb(0, 0).

The second part illustrates that we can restrict our search for admissible decision rules
to the ones that are maximal for some e-variable S. The third part illustrates that such
admissible decision rules do exist, assuming that the decision maker may be presented a
trivial decision task, in which no choice is available — which can also be interpreted as a
post-hoc cancellation of the real decision task.

Example 4 Consider a simple vs. simple testing problem with H0 = {P0} and H1 = {P1}.
Let p(Y ) be a strict p-value, i.e. P0(p ≤ α) = α for α ∈ [0, 1], that is monotonically
decreasing in the likelihood ratio Slr(Y ); use of such a p-value is standard in Neyman-
Pearson testing with continuous-valued outcome spaces. Consider the following variation
of Example 1: B = R+ ∪ {triv} with trivial loss function Ltriv as defined above, and for
b ∈ R+, Ab = {0, b} and Lb(0, 0) = 0, Lb(0, b) = b and we set Lb(1, 0) := `b := 1 for all
b ∈ R+. Consider for all 0 < α < 1, the decision rule δ∗ as in (20) relative to e-variable
Snp(α). When presented with loss function Lb, this decision rule always plays 0 if b > 1/α.
If b ≤ 1/α, it plays b if b ≤ Snp(α) (i.e. if Snp(α) = 1/α, i.e. if p ≤ α) and 0 otherwise (i.e. if
Snp(α) = 0, i.e. if p > α). By Part 3 of the lemma above, this decision rule is admissible for
all α. The conditions are easily verified by noting that the e-variable is trivially sharp, and
taking B(y) = 1/α to be constant. Then δ∗ becomes B-sharp relative to Snp(α).

Now consider the δ∗ as in (20) based on the likelihood ratio e-variable Slr. When pre-
sented Lb, this decision rule plays b if b ≤ Slr and 0 otherwise. This decision rule is admissible
as well: to verify the conditions of Part 3 of the lemma above, note that, again, Slr is sharp.
To see this, define B(y) := Slr(y) (corresponding to the situation in which an adversary
always poses the highest-loss decision rule at which one would still reject the 0). Then δ∗ is
B-sharp relative to S.

4 E-Posteriors for General Decision Problems

We now let {Pθ : θ ∈ Θ} be a statistical model. For simplicity we assume that all parameters
in Θ ⊆ Rk for some k ≥ 1 are of interest; the case with nuisance parameters is deferred to
Section 5. Let Y,Y be as before and let S = {Sθ : θ ∈ Θ} be a collection such that for each
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θ ∈ Θ, Sθ = Sθ(Y ) is an e-variable relative to null hypothesis H0 = {Pθ}. The e-posterior
corresponding to S is defined simply by setting, for all y ∈ Y, P̄ (θ | y) := S−1

θ (y), with
conventions about division by 0 as underneath (7).

Although it is not required by the definition above, all e-posteriors we encounter in our
examples are actually based on e-processes, a more general notion than e-variable that arises
when all the P0 ∈ H0 determine the distribution of a discrete random process {Xi : i ∈ N}
with each Xi taking values in a set X . Such e-process-based e-posteriors (although not under
this name) play a major role in existing work (such as (Howard et al., 2021) and the other
references below) on anytime-valid confidence sequences, and reviewing this work seems the
best way to introduce them.

E-Processes and Anytime-Valid Confidence We observe a random vector Y = Xτ

for some stopping time τ defined relative to some filtration (σ(V n) : n ∈ N} where Vi is
a coarsening of Xi = (X1, . . . , Xi) (usually we just take Vi = Xi but other choices are
sometimes convenient (Grünwald et al., 2019)). An e-process (Ramdas et al., 2021) is a
function s :

⋃
n∈NX n → R+

0 such that for every stopping time τ (defined relative to the
filtration above), s(Xτ ) is an e-variable. We set Y := Xτ for some τ whose precise definition
may be unknown; in practice we only observe that τ = n, Y = Xn. This information
is sufficient to calculate the e-variable S := S(Y ) = s(Xτ ), since for all n we must have
τ = n ⇒ s(Xτ ) = s(Xn). Thus, the e-posteriors below may invariably be viewed in two
ways: based on a collection S of e-variables for fixed n, but also as based on a collection S ′
of e-processes, turned into a collection of e-variables by the stopping rule τ . Since for all xn

for which τ = n, ‘τ = n;Xτ = xn’ is the same event as Xn = xn, we can and will abbreviate
P̄ (θ | τ = n;Xτ = xn) to P̄ (θ | xn), as is also a common abbreviation for the standard Bayes
posterior. We then have P̄ (θ | xn) = s−1(xn).

A direct consequence of P̄ (θ | y) being an e-posterior is that under any stopping time τ ,
for all θ ∈ Θ,

Pθ(P̄ (θ | Xτ ) ≤ α) = Pθ

(
sθ(X

τ ) ≥ 1

α

)
≤ α, (21)

where we used that sθ(X
τ ) is an e-variable and then Markov’s inequality. (21) expresses that

(csα,n : n ∈ N) with csα,n = {θ ∈ Θ : P̄ (θ | Xn) ≥ α} is a 1 − α anytime-valid confidence
sequence. We observe that data collection is stopped at some n (i.e. τ = n) and we observe
data Xn = xn, and we output csα,n. We can be sure that Pθ(θ ∈ csα,n) ≥ α irrespective of
the definition of τ ; in particular we may not know this definition, as will often be the case
in practice. The use of e-processes {Sθ : θ ∈ Θ} for constructing such AV confidence sets is
well-known; by re-casting their inverse as e-posteriors we highlight their reliable usability in
the more complex decision problems of Section 4.1 and 4.2 that do not involve an a priori
fixed α. Before we move to these we give some examples of e–posteriors, based on well-known
constructions for anytime-valid confidence sequences.

Prior-based e-posteriors One simple type of e-posterior directly relates to standard
Bayesian posteriors: let W be a distribution on Θ. We can define a Pθ-e-process by set-
ting Sθ(y) = pW (y)

pθ(y) where pW is the Bayes marginal density pW (y) :=
∫
pθ(y)dW (θ). We

denote the corresponding e-posterior by P̄[W ]. In case W has density w, we have

P̄[W ](θ | y) =
pθ(y)

pW (y)
=
w(θ | y)

w(θ)
(22)

16



where w(θ | y) is the standard Bayes posterior density of θ given y. We now explore this
particular e-posterior for the Gaussian location family and later, in Example 9 for general
1-dimensional exponential families. Our aim here is simplicity in illustration — prior-to-
posterior ratios for much more complex models such as Gaussian processes were earlier ex-
plicitly used by Waudby-Smith and Ramdas (2020) and Neiswanger and Ramdas (2021).

Example 5 [The Normal Location Family - smooth prior] Let {Pθ : θ ∈ R} represent
the normal location family, where Pθ with density pθ has mean θ and variance 1. We take
as prior a normal distribution with mean θ0 and variance ρ2 > 0, and define the precision
λ := ρ−2. Suppose we observe Y = xn = (x1, . . . , xn). By standard calculations, the standard
Bayesian posterior is given by a normal distribution with mean θ̆ = (n/(n+ λ))θ̂ + (λ/(n+
λ))θ0, with θ̂ the MLE (

∑n
i=1 xi)/n, and posterior variance 1/(n+ λ), i.e. with density

w(θ | xn) =

√
n+ λ

2π
· e−

(n+λ)(θ−θ̆)2
2

so that, by (22),

P̄[W ](θ | y) =

√
n+ λ

λ
· e−

n+λ
2

(θ−θ̆)2+λ
2
·(θ−θ0)2

=

√
n+ λ

λ
· e−

n
2

(θ−θ̂)2+ 1
2
· nλ
n+λ
·(θ̂−θ0)2

(23)

where the latter equality follows by simple calculus when θ0 = 0 and reducing the general
case to this case by considering translated data x1 − θ0, . . . , xn − θ0; see Figure 1. Note that
P̄W (θ | Y ) ≤ α iff θ ∈ csα,n with

csα,n =

{
θ ∈ R : (θ − θ̂)2 ≥ 2

n
·
(
− logα+

1

2
log

n+ λ

λ

)
+

λ

n+ λ
· (θ̂ − θ0)2

}
. (24)

We see that P̄ (θ | y) plays a role analogous not to a density but to a tail probability
∫
θ′≥θ w(θ |

y) of a Bayesian posterior/cd, which is why we write P̄ with capital P .

A crucial difference between Bayesian posteriors and prior-based e-posteriors is that the
likelihood ratio defining the latter is allowed to depend on the θ in the numerator. Thus,
it is o.k. (since its inverse defines e-processes) to work with P̄[Wθ] defined by P̄[Wθ](θ|y) :=
pθ(y)/p[Wθ](y) with Wθ a prior whose definition depends on θ. If, for example, we take as Wθ

the Gaussian with mean θ0 := θ and variance λ, then (24) reduces to

csα,n =

{
θ ∈ R : (θ − θ̂)2 ≥ n+ λ

n
· 2

n
·
(
− logα+

1

2
log

n+ λ

λ

)
.

}
(25)

Luckiness: E-posteriors vs. Bayesian posteriors as Hope vs. Belief The confidence
sequence csα,n = R\csα,n defined by (24) depends on the data Y via the MLE θ̂ = θ̂(Y ): the

closer θ̂ to the mean θ0 of prior W , the narrower and hence ‘better’ the interval. Still, csα,n is
valid irrespective of whether the prior W is in any sense ‘correct’ or representative. We may
thus say that whereas in Bayesian inference, W encodes belief, in e-posterior applications W
encodes something weaker which might be called hope: if the data is well-aligned with the
prior (MLE θ̂ close to θ0) our bounds improve, but they are valid irrespective of which θ ∈ Θ
generates the data. Bounds such as (24) are called luckiness bounds (if one is lucky, the
bound will be good) and this way of thinking about data-dependent bounds was pioneered
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in the PAC-Bayesian literature (Shawe-Taylor and Williamson, 1997, Grünwald and Mehta,
2019). From (25) we see that in this particular example, the data dependency disappears if
we use prior Wθ0 ; note that csα,n in (24) will be narrower than the one based on (25) in the

‘lucky’ event that |θ̂ − θ0| is within a constant times (log n)/n.
If we compare the size of a standard confidence interval to (24), we see that the latter is

wider by a factor of order log n. We can use a different θ-dependent prior W in which this
logarithmic blow-up is replaced by a small constant factor if, again, we are lucky, but in a
different sense. This approach works using a discrete prior that anticipates the α that one
will probably be interested in, to be denoted α∗, and the sample size n one plans for or hopes
to achieve, denoted as n∗. We now present e-posteriors for Gaussian location families leading
to anytime-valid cs’s that are within a constant factor of the standard width as long as the
actual n and α are close to the anticipated n∗ and α∗. Crucially though, if the actual values
are not equal to the anticipated ones (by early or late stopping or optional continuation), the
ci is still valid, unlike the case for a standard confidence interval; and its width deteriorates
gracefully as the discrepancy ratio c as defined in (27) moves away from 1. In Appendix A.2
we point out how the construction can be generalized to 1-dimensional exponential families.

Example 6 [θ-dependent discrete prior] Fix anticipated sample size n∗ and confidence
level 0 < α∗ < 1. For each θ we define θ− < θ and θ+ > θ to satisfy

1

2
n∗(θ − θ+)2 =

1

2
n∗(θ − θ−)2 = − log

α∗

2
. (26)

Now define the e-variable Sθ(y) = (1/2)
pθ− (y)

pθ(y) + (1/2)
pθ+ (y)

pθ(y) . We will use it for actual sample

sizes n and levels 0 < α < 1 that are not necessarily equal to the hoped-for n∗ and α∗. In
Appendix A.2 we show that a sufficient condition for Sθ(Y ) ≥ α−1 is that(

θ − θ̂
)2
≥ 1

2
·
(
− log(α/2)

n

)
·
(
c1/2 + c−1/2

)2
with c :=

n∗/(− log(α∗/2))

n/(− log(α/2))
(27)

Note that this corresponds to the rejection region at level α for the test based on Sθ, which
is thus seen to have width |θ − θ̂| � 1/

√
n, of the same order as the region for the standard

Neyman-Pearson test, with a factor depending on how well aligned n, n∗, α and α∗ are. Sθ
gives the e-posterior promised above: we set P̄[n∗,α∗](θ | Y ) := 1/Sθ(Y ).

In practice, one would use P̄[n∗,α∗] if one is quite sure that n will be close to n∗, and
P̄[W ] for small λ otherwise. Combining ideas from Example 5 and 6 one can also get e-
posteriors like those in Example 5 that do not have strong hopes about n∗, but with a log log
-dependence rather than a log-dependence n; see the techniques of ‘stitching’ (Howard et al.,
2021) or ‘switching’ (Van der Pas and Grünwald, 2018). This, however, comes at the cost of
worse multiplicative constants. While the e-processes of Example 5 and Example 6 and the
variations we just mentioned are well-known in E-Value circles, we now continue with their
novel interpretations that, we feel, justifies the terminology e-posterior.

4.1 E-posteriors, Confidence and Type-I Risk

Our first use of the e-posterior is for deriving confidence statements in the post-hoc setting.
For this, we modify Definition 2 as follows:

18



Figure 1: (top left) the red-brown solid curve is the e-posterior P̄[W ](θ | y) for the normal

location family based on a sample y = (x1, . . . , x100) with θ̂(y) = 1 and prior W with λ = 1
and θ0 = 0 as in (23) (it reaches a maximum of about 15). The light-red solid curve is the
discrete e-posterior P̄[n∗,α∗] for α∗ = 0.05 and with a well-aligned n∗ = n = 100. The dashed
lines are the corresponding 1/2-dampened e-posteriors as used in Example 9; their maximum
is by design bounded by 2. For comparison, the solid green curve shows the standard posterior
w(θ | y) (compared to the confidence distribution w◦(θ | y) of Section 2.2 it is slightly tilted
towards θ = 0 but otherwise visually indistinguishable). More informatively, the dotted
green curve shows the tail area of the standard posterior,

∫
θ′:|θ′−θ̂|≥θ w(θ|y)dθ. (top right)

the light-red dashed curve is as on the left (note the different scale), the dampened discrete

e-posterior P̄
[1/2]
[100,0.05]. For comparison we show P̄[200,0.05] (in blue) and P̄[50,0.05] (in blue-green)

with misaligned n∗ (dashed lines are 1/2-dampened versions). (bottom) Focus on the right

tail, with the same legend as before (P̄
[1/2]
[200,0.05] and P̄

[1/2]
[50,0.05] lie about 0.05 to the right of

their undampened counterparts and are not shown; neither is the Bayes posterior density).
Note that the Bayes posterior tail area is 0.05 at θ̂ + 1.96/

√
n ≈ 1.2, as is to be expected

from a standard confidence/credible interval; the discrete posterior (light red) reaches 0.05 at
θ̂ + 2.72/

√
n ≈ 1.3, in accordance with Example 8. It is seen that for confidence-statements

as in Section 4.1, the un-dampened posteriors are to be preferred.
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Definition 3 A GNP decision task for estimation relative to given parametric model {Pθ :
θ ∈ Θ} is a multi-loss decision task with Γ = Θ ∪ {ii}, accompanied by a set of maximally
acceptable risks `b, one for each b ∈ B, i.e. a collection {(Ab, Lb : Θ × Ab → R+

0 , Lb(ii, ·) :
Ab → R+

0 , `b) : b ∈ B} such that for all b ∈ B, we have `b ∈ R+
0 . Relative to any given such

task and and decision rule δ we further define:

• Let P̄ (θ | Y ) be any e-posterior relative to {Pθ : θ ∈ Θ}. We call δ compatible with P̄
if we have P̄ (θ | y) · Lb(θ, δb(y)) ≤ `b for all y ∈ Y, b ∈ B, θ ∈ Θ.

• We call δ Type-I risk safe if

sup
θ∈Θ

EY∼Pθ

[
sup
b∈B

Lb(0, δb(Y ))

`b

]
≤ 1. (28)

Note that there is no alternative H1 any more, but there still is a Type-II loss, now denoted as
Lb(ii, a), the Type-II risk being defined as in (17) but with the supremum over {Pθ : θ ∈ Θ}
(i.e. as if H0 = H1). By the same reasoning as in Proposition 1, we get once again that every
decision rule that is compatible with some e-posterior P̄ (θ | Y ) is Type-I risk safe and vice
versa. Again we aim for a decision rule minimizing Type-II risk under a constraint of the
Type-I risk. However, the set Ab is now not necessarily embedded in R any more, hence we
cannot impose that Lb(θ, a) is ‘increasing’ or Lb(ii, a) is ‘decreasing’ in a. Rather than seeking
for a ‘maximal’ decision rule as in (20) we will therefore simply look, among all compatible
decision rules for some given e-posterior, for one that has small Type-II loss.

Although the setting is more general, we only consider its instantiation to inference of
confidence intervals: Θ is an interval in R and Ab = A := {[θL, θR] : θL, θR ∈ Θ, θR ≥ θL}
for all b ∈ B. Action a := [θL, θR] represents a confidence interval and we set the Type II-
criterion L(ii, [θL, θR]) = g(|θR − θL|) (independent of b) to be a strictly increasing function
of its width such that the cost of ‘abstaining’ — which amounts to giving as interval the full
Θ — is given by g(∞) := ` for some fixed ` > 0 (any function g that is strictly increasing
with limit ` will do)∗. We can set, as a simple example, with a = [θL, θR], Lθ(θ, a) = b · 1θ 6∈a
so that b expresses, in a very simple way, how important the decision is. We choose `b := 1
for all b. In the examples below we report a confidence interval that is symmetric around
the MLE and that is compatible to an e-posterior in the sense of Definition 3, so that we
have Type-I risk safety. Among all such intervals we report the smallest one, so that our
Type-II loss (confidence width) is small as well. The width of the confidence interval a that
we report based on this procedure when presented B = b will increase logarithmically with
b, as illustrated below. Alternatively, we could choose `b := b (the choice is up to us, decision
makers); then the reported interval will not depend on the observed B = b, but the assessment
of the Type-I risk by the e-posterior will become dependent on this b.

Example 7 [Normal Location Family, Continued] Suppose you observe Y = y, B = b.
Then with the smooth-prior-based e-posterior as in Example 5, we get:

P̄[W ](θ | Y ) · Lb(θ, [θL, θR]) = b · 1θ<θL∨θ>θR ·
√
n+ λ

λ
· e−

n
2

(θ−θ̂)2−nλ(θ̂−θ0)2

2(n+λ)

∗The idea can be extended in various ways to multivariate Θ by looking at volume instead of width, but
we will not pursue this here.
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which, from (24) is bounded by `b if

θL ≤ θ̂ −A and θR ≥ θ̂ +A where A =

√
2

n
·

√
log

b

`b
+

1

2
log

n+ λ

λ
+
nλ(θ̂ − θ0)2

n+ λ
.

To minimize the Type-II risk, we set θL and θR to satisfy these with equality. Suppose we
set `b := ` irrespective of b. Then with this procedure, we have a guaranteed Type-I risk
bounded by `, with interval widths scaling as

√
log b.

We can also use the e-posterior based on the discrete prior which anticipates (is opti-
mized for) a particular n∗ and α∗, while still giving valid bounds for other n and α, as in
Example 6. For the normal location family, reasoning analogously as above and using (27)
and substituting `b/b for α (so that now c = (n∗/n) · (log(2b/(`b))/(− log(α∗/2))), gives that
P̄[n∗,α∗](θ | Y ) · Lb(θ, [θL, θR]) is bounded by `b if

θL ≤ θ̂ −A and θR ≥ θ̂ +A where A =

√
2

n
·

√
log

2b

`b
·

(
c1/2 + c−1/2

2

)
. (29)

and we may again choose θL and θR to satisfy this with equality. The closer n to the
anticipated n∗, the smaller the confidence interval. This formula is valid for b > `b/2 and
useful for b ≥ `b. For, if b < `b then the desired risk bound is obtained trivially by any
interval, including the empty one: the maximum accepted risk is `b and the maximum loss,
b, would then be smaller.

Example 8 [Example 2, Cont.] Let us compare the confidence intervals obtained by (10)
(i.e. based on the standard objective Bayes/cd W ◦ | Xn, assuming b to be a fixed constant)
to e-posterior induced confidence intervals, using ‘scale’ ` = 1 throughout. First consider a
case that b is indeed fixed, say to 20. Then using (10) we get the standard 95% confidence
interval θ̂±1.96/

√
n. If we would anticipate this b and n (yet would still want valid inferences

if b were generated by some other means or the stopping time would turn out different from
n) we can apply the e-posterior P̄[n∗,α∗] with n∗ = n and α∗ = `/2b = 0.025 so that c in (29)

becomes 1. We get that based on the e-posterior, we output θ̂±
√

2(log 40)/
√
n = θ̂±2.72/

√
n,

so our ci is wider by a constant factor of about 1.4.
Now let us see what happens if we work with this P̄[n∗,α∗] (in particular, α∗ = 0.05,

n∗ = n, and we take ` = 1) if in reality B is not fixed. From (29) we get, using these choices,
that the e-posterior confidence interval upon observing B = b is given by [θ̂ − A, θ̂ + A]
with A =

√
2/n(log(2b)/

√
log 40 +

√
log 40). By construction, this gives by equivalence of

compatibility and Type-I risk safety, the desired bound EY∼Pθ [LB(θ, δB(Y ))] ≤ 1, which
holds irrespective of the true θ. So, according to the e-posterior, we expect a loss bounded
by `, and we get a loss bounded by `.

4.2 The E-Posterior Minimax Decision Rule

We now drop the NP Type-I/II risk dichotomy paradigm and re-consider the mechanism
by which E-variables and posteriors provided risk bounds to discover alternative reasonable
decision rules. For each θ ∈ Θ, b ∈ B, y ∈ Y, let `b,y be such that

Lb(θ, δb(y))

`b,y
≤ Sθ(y) i.e. P̄ (θ | y)Lb(θ, δb(y)) ≤ `b,y, for all y ∈ Y. (30)
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This corresponds to choosing `b,y to get ‘compatibility’ in the sense of Definition 2 and 3 but
now we allow the maximum-acceptable-risk `b,y to also depend on the data Y themselves.
Just as in (16), we get the bound:

EY∼Pθ

[
LB(θ, δB(Y ))

`B,Y

]
≤ EY∼Pθ

[
sup
b∈B

Lb(θ, δb(Y ))

`b,Y

]
≤ 1. (31)

If one knows δ and P̄ , one can employ the best bound `′b,y for which (30), and hence the

resulting bound (31) holds: clearly `′b,y = maxθ∈Θ P̄ (θ | y)Lb(θ, δb(y)). But this further

suggests to use the decision rule δ̄ for which this bound is itself minimized, i.e. to pick a
decision rule δ̄ satisfying, for all y ∈ Y, b ∈ B,

max
θ∈Θ

P̄ (θ | y) · Lb(θ; δ̄b(y)) = min
a∈Ab

max
θ∈Θ

P̄ (θ | y) · Lb(θ; a). (32)

We call any such decision rule e-posterior minimax. Note that this rule does not require
a secondary, Type-II loss criterion! In earlier applications of e-variables and posteriors, we
imposed ` ourselves and it made sense to choose it independently of b, but now it is determined
so as to give the best possible bounds so we want it to depend on b and even on y. We shall
now establish that in our running examples, the MLE is e-posterior minimax optimal, and
(a close approximation to) the corresponding bound `′b,y can be easily calculated.

If we try this directly with the e-posteriors designed in the previous section we do not
always get sharp bounds, due to the high variability of P̄ (θ | Y ) = S−1

θ (Y ), as can be seen from
the left panel in Figure 1. To (sometimes vastly) improve the bound, we can modify any given

posterior P̄ (θ | y) = S−1
θ (y) by defining a new, dampened posterior P̄ [γ](θ | Y ) = (S

[γ]
θ (Y ))−1

where S
[γ]
θ is itself an e-variable defined as S

[γ]
θ = (1− γ) + γSθ for 0 ≤ γ < 1, akin to what

we suggested underneath Lemma 1 for the case that L(0, 0) > 0. When giving bounds, for
simplicity we will content ourselves with using γ = 1/2; this will ensure that the posterior
can never become larger than 2.

Example 9 [One-Dimensional Exponential Families] Let {Pθ : θ ∈ Θ} be any given
regular (Barndorff-Nielsen, 1978) 1-dimensional exponential family given in its mean-value
parameterization and extended to n outcomes by independence. We write the KL divergence

between two members of the family for a sequence of n outcomes as D(P
(n)
θ′ ‖P

(n)
θ ) and we

abbreviate D(P
(1)
θ′ ‖P

(1)
θ ) to D(θ′‖θ). We denote by θ̂(y) the MLE based on data y = xn,

which is unique and equal to the empirical average n−1
∑n

i=1 φ(Xi), with φ the sufficient
statistic, whenever this average lies in Θ, which is an open set. Suppose we observe Y = xn

with θ̂(Y ) ∈ Θ. We use as our loss function Lb(θ, θ̆) := b ·D(θ̆‖θ), with b ∈ B = R+
0 — note

that in the case of the Gaussian location family, D(θ̂‖θ) = (1/2)(θ− θ̂)2 becomes the squared
error loss.

Consider first the e-posterior based on a smooth prior W as above Example 7. We fix

some 0 ≤ γ < 1 and let P̄
[γ]
[W ](θ | y) be the resulting dampened e-posterior. In Proposition 2

in the appendix we show that for any 0 < γ ≤ 1 the MLE θ̂ is the P̄
[γ]
[W ]-e-posterior minimax

estimator irrespective of b. We further, via Proposition 3, show that, for the choice γ = 1/2,
the bound (31) holds with

`b,y =
2b

n
D(P

(n)

θ̂
‖P (n)

W ) (33)
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for all n such that the expression on the right is larger than 1 — which will be the case for all

but the smallest n. Here we used the notation D(P
(n)
θ ‖P

(n)
W ) for the KL divergence between

distribution Pθ and Bayes marginal PW , both defined on n outcomes. For the normal location
family with prior with mean 0 and precision λ, we have the exact expression

D(P
(n)

θ̂
‖P (n)

W ) =
1

2
log

n+ λ

λ
+

nλ

n+ λ
θ̂2 so that `b =

2b

n

(
1

2
log

n+ λ

λ
+

nλ

n+ λ
θ̂2

)
which is found by using the fact that D(P

(n)

θ̂
‖P (n)

W ) = ln P̄W (θ̂ | y), an identity which follows

from (41) in the appendix and holds for general regular exponential families. If these have
continuous prior w, we get, for θ̂ in any compact subset of the parameter space, the expression
(Grünwald, 2007, Chapter 8)

D(P
(n)

θ̂
‖P (n)

W ) =
1

2
log

n

2π
− log

w(θ̂)

I(θ̂)1/2
+ o(1),

with I(θ̂) the Fisher information at θ̂. For the dampened discrete-prior based e-posterior

P̄
[γ]
[n∗,α∗] we have only derived results for the normal location family. For that family, Propo-

sition 2 establishes that again the MLE is e-posterior minimax optimal irrespective of b and
γ. In the appendix we show (below Proposition 3) that, for the choice γ = 1/2, the bound
(31) holds if we take, with c = (n∗/n) · ((log 2)/(− log(α∗/2))),

`b,y = `b =
2b

n
· 1

log 2
·
(
c+ c−1 + 2

)
. (34)

Of course, if n and b are fixed then for the MLE one can in fact get a better bound. But the
bounds (33) and (34) will still hold if n were random, the outcome of some stopping time
with unknown definition, and/or if a decision rule was used that may depend on y itself. In

particular, returning to Example 3, if we use the e-posterior P̄
[1/2]
W or P̄[n∗,α∗], then, upon

being presented B = b, we assess our uncertainty by stating

LB(θ, θ̂)

`B,Y
≤ 1

with `b,y given by (33) or (34), respectively. By (31), these assessments are correct ‘on
average’, i.e. in expectation over Y . The fact that this is possible under arbitrary definitions
of B is due to the — perhaps trivial but still — reason that the factor B in LB and `B,Y
cancels. In contrast, based on naively using a confidence or objective Bayes posterior, we
would assess our uncertainty as in Example 3 by EȲ∼Pθ̂(Y )

[LB(Y )(Ȳ , θ̂(Y ))], which as indicated

there is not correct on average.

5 Loose Ends and Final Remarks

Composite H0 and H1, e-posteriors with nuisance parameters Whenever in this
paper we gave a concrete example of an e-variable, it featured a simple null and alternative.
We can still construct useful e-variables for general composite H0 and H1; Grünwald et al.
(2019) is entirely devoted to developing methods for doing so based in the Reverse Information
Projection (RIPr). These methods are readily extended to provide anytime-valid cs’s for
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models with nuisance parameters of the form {Pθ,γ : θ ∈ Θ, γ ∈ Γ}. Here θ ∈ Θ is the
parameter (vector) of interest and γ ∈ Γ is the nuisance parameter. Via the RIPr one designs
a collection of e-processes S = {Sθ : θ ∈ Θ}, one for each θ ∈ Θ, each Sθ′ being an e-process
for the null hypothesis H0 = {Pθ′,γ : γ ∈ Γ}. This is done, for example, by Turner and
Grünwald (2022) for the 2 × 2 contingency table setting. The e-processes Sθ can then be
used, as in Section 4, to define an e-posterior by P̄ (θ | Y ) := S−1

θ (Y ), and the results of
e.g. Turner and Grünwald (2022) can readily be applied to the confidence and e-posterior
minimax applications of Section 4.1 and 4.2. Importantly, the e-posterior will now only be
defined on the parameters of interest, and not on the nuisance parameters.

Why set an a priori α at all? We showed that, with e-values, we get valid risk bounds
in post-hoc determined decision tasks, irrespective of any pre-set α. This raises the question
whether we should set such an α at all. In fact we do not need to — hopefully making
our approach acceptable to the many statisticians that are critical of significance testing
(McShane et al., 2019). Still, if we want to, we can. For example, as researchers we might
set ourselves an initial α for an initial study to be used in deciding whether a much larger
and expensive study should even be contemplated (we could then in fact also combine the
initial data and the data of the larger study by multiplying the corresponding e-variables
(Grünwald et al., 2019)).

How reasonable and relevant is the setting? We aim to provide an extension of NP
theory with performance guarantees in an idealized setting that allows for dependency be-
tween the data and the loss. Of course, real life decision-making is murkier: loss functions
are implicit and ill-defined; models are incorrect, protocols are not strictly followed, and so
on — so how reasonable is our idealization? The rationale of our approach is that, with a
method that provably works well in the idealized setting, there is at least some hope that it
also performs reasonably well in the murkier real world; if a method is not suitable even in
idealized settings, we would have no confidence at all of it doing anything reasonable in the
real world. The same methodology underlies the original NP theory — the setting of Type I
and Type II error control it deals with is an idealization. However, we would argue (following
(Fisher, 1955, Edwards, 1984) and many others) that what it formalizes/idealizes is really the
setting of industrial quality control rather than that of scientific inference, experimentation
and accumulation of knowledge. We aim to formalize the latter instead (Ter Schure and
Grünwald, 2021) — and then the BIND assumption of standard NP theory seems unrealis-
tic; some account of dependency and optional continuation is needed, and e-values provide
this. In reality the dependencies may not be as strong as in Example 2 and 3 — we adopted
extreme cases there merely for illustrative purposes — but they will distort the validity of
our conclusions.

Relatedly, thinking in terms of risks rather than error probabilities — as our approach re-
quires — is difficult and practitioners will be tempted to think of e-values simply as ‘evidence’
or of e-posteriors simply as a notion of ‘uncertainty’ without directly contemplating risks,
losses or actions. But this is perfectly fine: it would still be quite reassuring that they use
notions of evidence and uncertainty that, if they were operationalized to make statements
about actual decisions, would give risk bounds that remain valid without the often unreal-
istic BIND assumption. For if instead they follow the current practice of using p-values for
evidence and confidence intervals for uncertainty while BIND does not hold, then it is simply
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not clear what practical implication — and therefore, what real meaning — their statements
really have.

Related and Future Work How are e-based decisions related to Bayesian inference?
To Martin-Liu’s inferential models? To game-theoretic probability (all our results can be
interpreted in terms of betting games — see below)? To the likelihood principle (Edwards,
1984) and to Dawid’s (1999) prequential principles? All of these comparisons are bound to
lead to interesting insights and provide lots of opportunity for future work!
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A Details and Proofs

A.1 Details for Section 2.1

Unbounded expected loss based on (5) and an ‘improvement’ of (5) This issue is
best illustrated by (but certainly not limited to) a discrete-valued p-value p that can take
values 1, 1/2, 1/4, 1/8, . . . , 1/2k for some k > 0 and that is piecewise strict, i.e. it satisfies
P0(p ≤ α) = α for α ∈ {1, 1/2, . . . , 1/2k}. Consider a GNP decision task as in Section 3.1
with loss function satisfying Lb(0, a) = 2a, for a ∈ Ab = {0, 1`, 2`, 4`, . . . , 2k`}. Based on (5),
upon observing p = 2−c, one would take action 2c. The resulting expected loss, analogously
to (6), is given by

∑k
c=1 2 · 2−c2c = 2k which goes to ∞ as we make k larger — showing that

the expected loss can be unbounded if we base decisions on (5). Now, instead of using (5) it
may seem more reasonable to pick the largest a such that

q(y) · Lb(0, a) ≤ `, (35)

where q(y) = p(y)/2: with this modification, for each a ∈ Ab, we end up multiplying Lb(0, a)
in (35) with exactly the probability that a will be selected (rather than, as in (5), with some
potentially larger probability. For example, a = 2c will be selected if q(y) = 2−c; this happens
iff p(y) = 2−c+1, which happens with exactly probability 2−c, so with probability q(y)). Yet
still, using (35) leads to unbounded expected loss: in the above sample the expected loss is
now k rather than 2k, still growing linearly in k.

Example 10 [Example 2, Details] To construct a sequence of B’s as in Example 2,
we now fix some θ∗ and some ε > 0 and strictly positive function g0 with g0(ε) = ε and
limy→∞ g0(y) = 0; and we set gθ∗(y) := g0(y − θ∗) for y = θ∗ + ε = 1.

Now take any B(y) such that whenever y ≥ θ∗ + ε, then B(y) is such that δB(Y )(Y )
has as its left-end θL = θ∗ + gθ∗(y) and, being symmetric around y, at the right-end θR =
y + (y − (θ∗ + gθ∗(y))) : if y = θ∗ + ε, the CI will be a single point at θ∗ + ε; if y gets larger,
the CI widens but no matter how large y, it never covers θ∗. The αy corresponding to this

interval must therefore satisfy αy/2 =
∫ θ∗+gθ∗ (y)
−∞ fy(u)du, where we by denote fµ the density

of a normal with variance 1 and mean µ, so αy := 2Fy(θ
∗ + gθ∗(y)) = 2F0(θ∗ − y + gθ∗(y)),

where Fµ is the CDF of a normal with mean µ and variance 1. It follows that B(y) must be
equal to `/αy = `/(2F0(θ∗ − y + gθ∗(y)))

In such a situation, if the data is actually sampled from θ∗, then the expected loss we
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actually make can be calculated in steps as follows:

EY∼Pθ∗ [LB(Y )(θ
∗, δ(Y ))] = EY∼Pθ∗ [B(Y ) · 1θ∗ 6∈δ(Y )] ≥ EY∼Pθ∗ [B(Y ) · 1Y≥θ∗+ε]

=

∫ ∞
θ∗+ε

fθ∗(y) · `

2 · F0(θ∗ − y + gθ∗(y))
dy =

∫ ∞
ε

f0(y) · `

2 · F0(g0(y)− y))
dy

≥ `

2
·
∫ ∞
ε

exp

(
−y

2

2

)
· exp

(
(y − g0(y))2

2

)
(y − g0(y))dy

≥ ` ·
√
π

2
·
∫ ∞
ε

exp (−yg0(y)) · (y − g0(y))dy,

where we used the standard result that, with P0 denoting a standard normal distribution,
P0(Y ≥ c) ≤ exp(−c2/2)/(c ·

√
2π). Clearly the integral diverges for many choices of g0

satisfying our requirements; for example, we can take g0(y) = ε2/y (which works for all
ε > 0) or (if we want to make the probability of large B smaller) we can set g0(y) =
ε · (log(y+ exp(ε)− ε))/y if ε is set to 2; then exp(−yg0(y)) = (y+ exp(2)− 2)−2. Let us take
the former choice to see how a typical sample of the B’s might look like. Without loss of
generality, we take θ∗ equal to 0, ε = 0.01 and ` = 1, and sample i.i.d. B(Y1), B(Y2), . . ., and
set B = 0 (‘decision-problem called off’) whenever y < ε. We then get (sample generated by
R) the sample shown in (13).

Example 11 [Example 3, Details] Consider the Gaussian location family and take Lb(θ, a) =
b · (θ − a)2 and n = 1 as in Example 3. Fix some θ∗ and set B(y) = exp((y − θ∗)2/2)gθ∗(y)
where gθ∗ is some probability density that is symmetric around θ∗. Following Example 3,
but now with B instantiated to the above, the loss one thinks one makes based on w◦(θ | Y ),
on average in several studies with true parameter θ∗, is given, using that θ̂ is the mean of
w(θ | Y ), which is a normal density with variance 1 (since n = 1), by

EY∼Pθ∗ [Eθ̄∼W |Y [LB(Y )(θ̄, θ̂(Y ))]] = EY∼Pθ∗

[
e(Y−θ∗)2/2gθ∗(Y )Eθ̄∼W |Y (θ̂(Y )− θ̄)2

]
=

EY∼Pθ∗

[
e(Y−θ∗)2/2gθ∗(Y )

]
=

1√
2π

∫
gθ∗(y)dy =

1√
2π

(36)

whereas the loss one actually makes on average is

EY∼Pθ∗ [LB(θ∗, Y )] = EY∼Pθ∗
[
e(Y − θ∗)2/2gθ∗(Y )(θ∗ − Y )2

]
=

1√
2π

∫
gθ∗(y)(θ∗ − y)2dy.

(37)
It is now easy to pick gθ∗(y) such that the first expression is finite whereas the second is
infinite. For example, suppose we take gθ∗ to be the distribution of X − θ∗, where X has a
Student’s t-distribution with 3 degrees of freedom. Then g∗(y) � y4 so (37) will be infinite
yet (36) is finite. The list of B’s we showed in Example 3 is taken based on this g∗.

A.2 Details for Section 3

Proof of Lemma 1 We first prove another lemma:

Lemma 2 Suppose that all P ∈ H0 have full support Y. Suppose δ is Type-I risk safe and
there exists a function B : Y → B and an e-variable S such that S is sharp and δ is B-
sharp relative to S. Then δ is a.s. compatible with S, i.e. for all P ∈ H0, all b ∈ B,
P (δb(Y ) ≤ `bS(Y )) = 1 .
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Proof: By Proposition 1, there must be some e-variable S′ such that δ is compatible with
S′. Suppose now that for the P ∈ H0 with EP [S] = 1, we have (a) P (S 6= S′) > 0. By
compatibility, for all y ∈ Y, for the B above (b) : S(y) = LB(y)(0, δB(y)(y))/`B(y) ≤ S′(y).
But (b) implies P (S ≤ S′ = 1) and (b)+(a) imply P (S < S′) > 0. But then, by sharpness of
S, S′ cannot be an e-variable, so we have a contradiction; it follows that P (S 6= S′) = 0; the
result follows. 2

Proof: [of Lemma 1] For (1): the existence of an a ∈ Ab such that S−1(y)Lb(0, a) ≤ `b
is immediate from requirement (I); the existence of a largest such a by requirement (II).
Compatibility is immediate.

For (2): suppose that a decision rule δ is Type-II risk admissible. By definition it is
also Type-I risk safe, hence by Proposition 1 it must be compatible with some e-variable S
satisfying, for all b ∈ B, L(0, 0)/`b ≤ infy∈Y S(y). But then, by Part 1 of the Lemma, δ∗ as
in (20) is well-defined and, by definition of compatibility, for all y ∈ Y, b ∈ B we must have
δb(y) ≤ δ∗b (y) with δ∗b (y) as in (20) for that S, so that, for all P ∈ H0, for all b ∈ B, we have
P (δb(Y ) ≤ δ∗b (Y )) = 1; but then if P (δb(Y ) < δ∗b (Y )) > 0 for some b ∈ B, δ is not admissible
by the fact that Lb(1, a) is strictly increasing in a. It follows that P (δb = δ∗b ) = 1 for all
P ∈ H0 hence also for P ∈ H1.

For (3), Let δ∗ be given by (20) and let δ◦ be another Type-I risk safe decision rule. We
will show that δ◦ cannot be strictly better than δ∗; this implies the result.

Suppose first (Case 3(a)) that for the given B for which δ∗ is B-sharp relative to S, δ◦ is
a.s. compatible with S ‘on B’, i.e.

for all P ∈ H0: P (LB(Y )(0, δ
◦
B(Y )(Y )) ≤ `B(y) · S(y)) = 1.

Let Y ′ be any set with for all y ∈ Y ′ , LB(y)(0, δ
◦
B(y)(y)) < `B(y) · S(y). If there exists such

a set with P (Y ′) > 0 for some P ∈ H0, then we also have P (Y ′) > 0 for P ∈ H1 so under
the given B, the Type-II risk of δ◦ is strictly larger (since Lb(1, a) is strictly decreasing in
a) than that of δ∗, so δ◦ is not strictly better than δ∗. Hence, for δ◦ to be strictly better
than δ∗, we must have P (Y ′) = 0 for all sets Y ′ as above, all P ∈ H0. But then by Lemma 2
above we have that δ◦ is a.s. compatible with S. By definition of δ∗ we then have that for
all P ∈ H0 ∪ H1, all b ∈ B: P (δ◦b (Y ) > δ∗b (Y )) = 0 , and hence δ∗ is not strictly better than
δ◦ in Case 3(a).

Now consider the alternative Case 3(b) that for some (hence all) P ∈ H0,

P (LB(Y )(0, δ
◦
B(Y )(Y )) > `B(Y ) · S(Y )) > 0. (38)

In this case we must further have

P (LB(Y )(0, δ
◦
B(Y )(Y )) ≥ `B(Y ) · S(Y )) < 1, (39)

for suppose (39) does not hold, i.e. the probability is 1. We then have by sharpness of S
that for some P ∈ H0, EP [LB(Y )(0, δ

◦
B(Y )(Y ))/`B(Y )] > EP [S(Y )] = 1, violating the assumed

Type-I risk safety of δ◦.
(38) gives that there must be a set Y ′ with P (Y ′) > 0 (and hence P1(Y ′) > 0) such that

for all y ∈ Y ′,
LB(y)(0, δ

◦
B(y)(y)) < `B(y) · S(y) = LB(y)(0, δ

∗
B(y)(y)).
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Now set B′(y) := B(y) for all y ∈ Y ′ en B′(y) := triv for all y ∈ Y \ Y ′. Since Lb(0, a) is
increasing in a and Lb(1, a) is strictly decreasing in a, it follows that EP1 [LB′(1, δ

◦
B′(Y ))] >

EP1 [LB′(1, δ
∗
B′(Y ))] so δ◦ is not strictly better than δ∗. 2

Proofs for Section 4

Technical Preliminaries Consider a regular 1-dimensional exponential family {Pθ : θ ∈
Θ} given in its mean-value parameterization, as in the main text. We repeatedly use two
results. The first (easily proved using steepness of regular exponential families (Barndorff-
Nielsen, 1978)) is that for each fixed θ′ ∈ Θ, D(θ′‖θ) is a continuous function of θ ∈ Θ
satisfying

sup
θ<θ′

D(θ′‖θ) = sup
θ>θ′

D(θ′‖θ) =∞. (40)

The second result we need is the KL robustness property (Grünwald, 2007) that holds for all
regular exponential families: for any fixed y = xn such that θ̂(y) is well-defined, any θ ∈ Θ
and any prior W on Θ (W does not need to have a density), we have:

pθ(y)

pW (y)
= exp(−nD(θ̂‖θ) +D(P

(n)

θ̂
‖P (n)

W )). (41)

The Extension of P̄[n∗,α∗] to General 1-d Exponential Families Fix anticipated n∗

and α∗. By (40) above, for general regular 1-dimensional exponential families, there exist
θ− < θ < θ+ such that

n∗D(θ‖θ+) = n∗D(θ‖θ−) = − logα∗/2. (42)

Now define the e-variable Sl
θ(y) =

pθ− (y)

pθ(y) and Sr
θ (y) =

pθ+ (y)

pθ(y) and Sθ := (1/2)Sl
θ + (1/2)Sr

θ .

Sl
θ and Sr

θ coincide with the uniformly most powerful Bayes factors for a 1-sided test at
sample size n∗ and level α∗/2 of H0 = {Pθ} vs. H1 = {Pθ′ : θ > θ} and H1 = {Pθ′ : θ′ < θ}
respectively (Johnson, 2013). Therefore we propose to define P̄n∗,α∗(θ | y) := Sθ(y) as
a default ‘discrete’ (putting all its mass on θ+ and θ−) e-posterior for general exponential
families. In the case of the Gaussian location family, D(θ′‖θ) = (1/2)(θ′−θ)2 so the definition
coincides with that in Example 6.

We next provide a bound specific to the normal location family case. Note that P̄[n∗,α∗](θ |
y) can be written by (41) with W a prior putting mass 1/2 on θ+ and 1/2 on θ−. For the
Gaussian location family, (41) then gives:

P̄[n∗,α∗](θ | y) =
pθ(y)

1
2pθ−(y) + 1

2pθ+(y)

=
2e−nD(θ̂‖θ)

e−nD(θ̂‖θ−) + e−nD(θ̂‖θ+)

=
2e−(n/2)(θ̂−θ)2

e−(n/2)·(θ̂−θ+U)2 + e−(n/2)(θ̂−θ−U)2
=

2enU
2/2

e−n·(θ̂−θ)U + en·(θ̂−θ)U

≤ 2enU
2/2−n|θ̂−θ|U (43)

where U =
√

2(− log(α∗/2))/n∗. Using the final equation of (43) we see that a sufficient
condition for P̄[n∗,α∗](θ | y) ≤ α is

n|θ̂ − θ|U ≥ − log(α/2) + nU2/2. (44)

Straightforward rewriting shows that this is equivalent to (27).
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Establishing that the MLE is e-posterior minimax, and the corresponding bounds
Our results on the MLE being e-posterior minimax optimal rely on the following proposition:

Proposition 2 Consider a regular exponential family given in its mean-value parameter
space as above. Let θ′ ∈ Θ and let f : R+

0 → R+
0 be a continuous function such that

limx→∞ xf(x) = 0. We have

min
a

max
θ∈Θ

D(a‖θ) · f(D(θ′‖θ))

is achieved by a = θ′. In particular,

1. Suppose that θ̂ = θ̂(y) ∈ Θ and consider the dampened e-posterior P̄
[γ]
[W ](θ | y) for any

0 < γ ≤ 1 and any prior W . It can be written as f(D(θ̂‖θ)) for a function f of the
required type.

2. For the normal location family, the dampened e-posterior P̄
[γ]
[n∗,α∗](θ | y) can also be

written as f(D(θ̂‖θ)) for a function f of the required type.

Proof: Let g(a) := maxθ∈ΘD(a‖θ) · f(D(θ′‖θ)). First consider a = θ′. It follows from (40)
that the maximum over θ in the definition of g(a) = g(θ′) is achieved by some θ∗− < θ′ and
also by some θ∗+ > θ′. Now consider a 6= θ′. We must show that g(a) > g(θ′). If a > θ′, we
have that D(a‖θ∗−) > D(θ′‖θ∗−) so

g(a) ≥ D(a‖θ∗−) · f(D(θ′‖θ∗−)) > D(θ′‖θ∗−) · f(D(θ′‖θ∗−)) = g(θ′).

The case a < θ′ goes similarly, with θ∗+ replacing θ∗−. This establishes the first result.
As to (1), the case with γ = 1 now follows directly from (41). For γ < 1, use the fact that

1/((1− γ)x−1 + γ) is increasing in x.
As to (2): using (43), and again that D(θ̂‖θ) = (1/2)(θ̂− θ)2, and considering separately

the cases that θ̂ > θ and θ̂ < θ, we find that, for γ = 1,

P̄[n∗,α∗](θ | y) = 2enA
2/2 · 1

e−n·
√

2D(θ̂‖θ) + en·
√

2D(θ̂‖θ)
= f(D(θ̂‖θ)),

whhere f is of the required form. The result for γ < 1 then follows as above, using that
1/((1− γ)x−1 + γ) is increasing in x. 2

We next evaluate the bounds in Example 9. We start with a proposition that may be
used beyond the use of KL divergence as loss:

Proposition 3 Let Θ ⊂ R, b ∈ R+ and let Lb : Θ × Θ → R+
0 be a loss function with

Lb(θ, θ
′) = bL1(θ, θ′) and let θ̆ : Y → Θ be an estimator. Fix some y ∈ Y and let θ̆ := θ̆(y).

Consider an e-posterior P̄ (θ | y) with P̄sup := supy∈Y,θ∈Θ P̄ (θ | y). and let P̄ ′ be an upper
bound on P̄ up to a factor Csup i.e. for all θ ∈ Θ, y ∈ Y, P̄ (θ | y) ≤ CsupP̄

′(θ | y). Fix some

θL, θR ∈ Θ (depending on θ̆) with θL < θR so that both:

1. for all θ ≥ θR, P̄ ′(θ | y) ≤ 1 and P̄ ′(θ | y)L1(θ, θ̆) is decreasing in θ.

2. for all θ ≤ θL, P̄ ′(θ | y) ≤ 1 and P̄ ′(θ | y)L1(θ, θ̆) is increasing in θ.
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Then (30) holds for P̄ (θ | y) with

`b,y = b ·max{Csup, P̄sup} · max
θ∈[θL,θR]

L1(θ, θ̆). (45)

Proof: For θ ≤ θL, P̄ (θ | y)Lb(θ, θ̆) ≤ P̄ ′(θ | y)CsupLb(θ, θ̆) ≤ CsupP̄
′(θL | y)Lb(θL, θ̆) ≤

CsupLb(θL, θ̆). Analogously for θ ≥ θR, we have P̄ (θ | y)Lb(θ, θ̆) ≤ CsupLb(θR, θ̆). Finally for

θ ∈ [θL, θR], we have P̄ (θ | y)Lb(θ, θ̆) ≤ P̄sup ·maxθ∈[θL,θR] ·Lb(θ, θ̆). The result follows. 2

We now use Proposition 3 to show the bounds (33) and (34) of Example 9. Assume the
setting of that example. We set θ̆ to the MLE and L(θ, θ̆) := D(θ̆‖θ). We first apply

Proposition 3 with P̄ ′(θ|y) := P̄ (θ|y) (and Csup = 1) set to the dampened e-posterior p
[1/2]
W

for a smooth prior W (independent of θ) to show (33). Because of the dampening with
γ = 1/2, we know that P̄sup ≤ 2. We will apply the proposition with θL < θR such that

p
[1/2]
W (θL | y) = p

[1/2]
W (θR | y) = 1. These must exist (use (40)) and by (41) they satisfy

D(θ̂‖θL) = D(θ̂‖θR) =
D(P

(n)

θ̂
‖P (n)

W )

n
.

To verify the conditions of Proposition 3, we will show, using (41), that

D(θ̂‖θ) exp(−nD(θ̂‖θ) +D(P
(n)

θ̂
‖P (n)

W )) (46)

is increasing for θ < θL and decreasing for θ > θR. For this, setting C = D(P
(n)

θ̂
‖P (n)

W ), it is

sufficient to show that g(u) := u exp(−nu+C) is decreasing if u ≥ D(θ̂L‖θL), i.e. if u ≥ C/n.
Differentiation gives that g(u) is decreasing if u > 1/n, so Proposition 3 can be applied if
C ≥ 1 and then (45) gives (33).

We next apply Proposition 3 to the dampened discrete e-posterior P̄ := P̄
[1/2]
[n∗,α∗] with the

Gaussian location family to show (34). Again, by the dampening, P̄sup ≤ 2. We will use

Proposition 3 with P̄ ′(θ|y) = 2 exp(nU2/2 − n|θ̂ − θ|U) with U as in (43) ; P̄ ′ can be seen

to be an upper bound of P̄[n∗,α∗] by (43) and hence, since trivially P̄
[1/2]
[n∗,α∗] ≤ 2P̄[n∗,α∗], we

have P̄ ′ ≤ CsupP̄
[1/2]
[n∗,α∗] with Csup = 2. Using (44) and (27) with α = 1, we find that with

θ′L = θ̂ − V ′, θ′R = θ̂ + V ′ and c = (n∗/n) · ((log 2)/(− log(α∗/2))) and

V ′ =

√
log 2

2n
·
(
c1/2 + c−1/2

)
we are guaranteed that P̄ ′(θ | y) ≤ 1 for θ ≤ θL and θ ≥ θR. Further, simple differentiation
shows that P̄ ′(θ | y)(θ−θ̂)2 is increasing at θ < θ′′L and decreasing at θ > θ′′R where θ′′L = θ̂−V ′′

and θ′′R = θ̂ + V ′′ with

V ′′ =
2

nU
=

√
2

n
·

√
n∗

n(− log(α∗/2))
=

√
2

(log 2) · n
· c1/2.

Combining these two displays, we find that the conditions of Proposition 3 hold if we set

θL = θ̂ − V , θR = θ̂ + V , V =
√

2
(log 2)·n ·

(
c1/2 + c−1/2

)
. Using supθ∈[θL,θR]D(θ̂‖θ) = V 2/2

and max{Csup, psup} = 2 in (45) now gives (34).
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